Loading…
On arithmetic progressions on Pellian equations
We consider arithmetic progressions consisting of integers which are y -components of solutions of an equation of the form x 2 − dy 2 = m . We show that for almost all four-term arithmetic progressions such an equation exists. We construct a seven-term arithmetic progression with the given property,...
Saved in:
Published in: | Acta mathematica Hungarica 2008-07, Vol.120 (1-2), p.29-38 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-faded63aa437ab852819cb33bbd3066503b0a35ffa86e354213b077cf4e2b4c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-faded63aa437ab852819cb33bbd3066503b0a35ffa86e354213b077cf4e2b4c03 |
container_end_page | 38 |
container_issue | 1-2 |
container_start_page | 29 |
container_title | Acta mathematica Hungarica |
container_volume | 120 |
creator | Dujella, A. Pethő, A. Tadić, P. |
description | We consider arithmetic progressions consisting of integers which are
y
-components of solutions of an equation of the form
x
2
−
dy
2
=
m
. We show that for almost all four-term arithmetic progressions such an equation exists. We construct a seven-term arithmetic progression with the given property, and also several five-term arithmetic progressions which satisfy two different equations of the given form. These results are obtained by studying the properties of a parametric family of elliptic curves. |
doi_str_mv | 10.1007/s10474-007-7087-1 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10474_007_7087_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10474_007_7087_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-faded63aa437ab852819cb33bbd3066503b0a35ffa86e354213b077cf4e2b4c03</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqHwAezyA6Zjj19dooqXVKksYG3Zjl1SpUmx0wV_T6KyZjVXV3NGcwi5Z_DAAPSyMBBa0ClSDUZTdkEqJo2hXCG_JBVwVFTylbgmN6XsAUAiiIost33tcjt-HeLYhvqYh12OpbRDX-qhr99j17Wur-P3yY1zeUuukutKvPubC_L5_PSxfqWb7cvb-nFDAzdmpMk1sVHonEDtvJHcsFXwiN43CEpJQA8OZUrOqIhScDYVWockIvciAC4IO98NeSglx2SPuT24_GMZ2NnYno3tHGdjyyaGn5ky7fa7mO1-OOV-evMf6BexPlj-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On arithmetic progressions on Pellian equations</title><source>Springer Nature</source><creator>Dujella, A. ; Pethő, A. ; Tadić, P.</creator><creatorcontrib>Dujella, A. ; Pethő, A. ; Tadić, P.</creatorcontrib><description>We consider arithmetic progressions consisting of integers which are
y
-components of solutions of an equation of the form
x
2
−
dy
2
=
m
. We show that for almost all four-term arithmetic progressions such an equation exists. We construct a seven-term arithmetic progression with the given property, and also several five-term arithmetic progressions which satisfy two different equations of the given form. These results are obtained by studying the properties of a parametric family of elliptic curves.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-007-7087-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica Hungarica, 2008-07, Vol.120 (1-2), p.29-38</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-faded63aa437ab852819cb33bbd3066503b0a35ffa86e354213b077cf4e2b4c03</citedby><cites>FETCH-LOGICAL-c288t-faded63aa437ab852819cb33bbd3066503b0a35ffa86e354213b077cf4e2b4c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dujella, A.</creatorcontrib><creatorcontrib>Pethő, A.</creatorcontrib><creatorcontrib>Tadić, P.</creatorcontrib><title>On arithmetic progressions on Pellian equations</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math Hung</addtitle><description>We consider arithmetic progressions consisting of integers which are
y
-components of solutions of an equation of the form
x
2
−
dy
2
=
m
. We show that for almost all four-term arithmetic progressions such an equation exists. We construct a seven-term arithmetic progression with the given property, and also several five-term arithmetic progressions which satisfy two different equations of the given form. These results are obtained by studying the properties of a parametric family of elliptic curves.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqHwAezyA6Zjj19dooqXVKksYG3Zjl1SpUmx0wV_T6KyZjVXV3NGcwi5Z_DAAPSyMBBa0ClSDUZTdkEqJo2hXCG_JBVwVFTylbgmN6XsAUAiiIost33tcjt-HeLYhvqYh12OpbRDX-qhr99j17Wur-P3yY1zeUuukutKvPubC_L5_PSxfqWb7cvb-nFDAzdmpMk1sVHonEDtvJHcsFXwiN43CEpJQA8OZUrOqIhScDYVWockIvciAC4IO98NeSglx2SPuT24_GMZ2NnYno3tHGdjyyaGn5ky7fa7mO1-OOV-evMf6BexPlj-</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Dujella, A.</creator><creator>Pethő, A.</creator><creator>Tadić, P.</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080701</creationdate><title>On arithmetic progressions on Pellian equations</title><author>Dujella, A. ; Pethő, A. ; Tadić, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-faded63aa437ab852819cb33bbd3066503b0a35ffa86e354213b077cf4e2b4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dujella, A.</creatorcontrib><creatorcontrib>Pethő, A.</creatorcontrib><creatorcontrib>Tadić, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dujella, A.</au><au>Pethő, A.</au><au>Tadić, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On arithmetic progressions on Pellian equations</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math Hung</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>120</volume><issue>1-2</issue><spage>29</spage><epage>38</epage><pages>29-38</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>We consider arithmetic progressions consisting of integers which are
y
-components of solutions of an equation of the form
x
2
−
dy
2
=
m
. We show that for almost all four-term arithmetic progressions such an equation exists. We construct a seven-term arithmetic progression with the given property, and also several five-term arithmetic progressions which satisfy two different equations of the given form. These results are obtained by studying the properties of a parametric family of elliptic curves.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10474-007-7087-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0236-5294 |
ispartof | Acta mathematica Hungarica, 2008-07, Vol.120 (1-2), p.29-38 |
issn | 0236-5294 1588-2632 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10474_007_7087_1 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics |
title | On arithmetic progressions on Pellian equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20arithmetic%20progressions%20on%20Pellian%20equations&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=Dujella,%20A.&rft.date=2008-07-01&rft.volume=120&rft.issue=1-2&rft.spage=29&rft.epage=38&rft.pages=29-38&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-007-7087-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s10474_007_7087_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-faded63aa437ab852819cb33bbd3066503b0a35ffa86e354213b077cf4e2b4c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |