Loading…

A multidimensional analogue of the A. N. Tikhonov’s Theorem on calculating values of a function with respect to approximately given Fourier coefficients

In this paper, we study the problem of approximation to reconstruct the value of a function of several variables from the approximate values of the Fourier coefficients of a function at a given fixed point. A theorem on the reconstruction of the value of a function with several variables at any give...

Full description

Saved in:
Bibliographic Details
Published in:Analysis mathematica (Budapest) 2020-12, Vol.46 (4), p.655-665
Main Authors: Benli, F. B., İlhan, O. A., Kasimov, Sh. G., Xaitboyev, G. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c240t-98a0c00afb086f19bb78134a4eb3e7f8a896af28072f593bfeb829630b8642c23
container_end_page 665
container_issue 4
container_start_page 655
container_title Analysis mathematica (Budapest)
container_volume 46
creator Benli, F. B.
İlhan, O. A.
Kasimov, Sh. G.
Xaitboyev, G. S.
description In this paper, we study the problem of approximation to reconstruct the value of a function of several variables from the approximate values of the Fourier coefficients of a function at a given fixed point. A theorem on the reconstruction of the value of a function with several variables at any given fixed point with a small error is given.
doi_str_mv 10.1007/s10476-020-0054-6
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10476_020_0054_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10476_020_0054_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-98a0c00afb086f19bb78134a4eb3e7f8a896af28072f593bfeb829630b8642c23</originalsourceid><addsrcrecordid>eNp9kEFu2zAQRYkiBeq4PUB3cwE5Q1KWqKVh1E0AI9k4QHcCxQ5tujJpkJQb73qN5ng9SWU462zmb-Z9zDzGvnKcccT6LnEs66pAgQXivCyqD2zC50oVopY_btgEuZSFVHPxid2mtEfEplJywl4XcBj67H66A_nkgtc96HGE7UAQLOQdwWIGjzPYuF-74MPp35-_CTY7CpEOEDwY3Zuh19n5LZx0P1C6cBrs4E0eC-G3yzuIlI5kMuQA-niM4cUddKb-DFt3Ig-rMERHEUwga51x5HP6zD5a3Sf68pZT9rz6tlneF-un7w_LxbowosRcNEqjQdS2Q1VZ3nRdrbgsdUmdpNoqrZpKW6GwFnbeyM5Sp0RTSexUVQoj5JTxa6-JIaVItj3G8bp4bjm2F7ntVW47ym0vcttqZMSVSeOu31Js9-MHo7f0DvQfe3eA8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A multidimensional analogue of the A. N. Tikhonov’s Theorem on calculating values of a function with respect to approximately given Fourier coefficients</title><source>Springer Nature</source><creator>Benli, F. B. ; İlhan, O. A. ; Kasimov, Sh. G. ; Xaitboyev, G. S.</creator><creatorcontrib>Benli, F. B. ; İlhan, O. A. ; Kasimov, Sh. G. ; Xaitboyev, G. S.</creatorcontrib><description>In this paper, we study the problem of approximation to reconstruct the value of a function of several variables from the approximate values of the Fourier coefficients of a function at a given fixed point. A theorem on the reconstruction of the value of a function with several variables at any given fixed point with a small error is given.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-020-0054-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Analysis mathematica (Budapest), 2020-12, Vol.46 (4), p.655-665</ispartof><rights>Akadémiai Kiadó, Budapest 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-98a0c00afb086f19bb78134a4eb3e7f8a896af28072f593bfeb829630b8642c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benli, F. B.</creatorcontrib><creatorcontrib>İlhan, O. A.</creatorcontrib><creatorcontrib>Kasimov, Sh. G.</creatorcontrib><creatorcontrib>Xaitboyev, G. S.</creatorcontrib><title>A multidimensional analogue of the A. N. Tikhonov’s Theorem on calculating values of a function with respect to approximately given Fourier coefficients</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>In this paper, we study the problem of approximation to reconstruct the value of a function of several variables from the approximate values of the Fourier coefficients of a function at a given fixed point. A theorem on the reconstruction of the value of a function with several variables at any given fixed point with a small error is given.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFu2zAQRYkiBeq4PUB3cwE5Q1KWqKVh1E0AI9k4QHcCxQ5tujJpkJQb73qN5ng9SWU462zmb-Z9zDzGvnKcccT6LnEs66pAgQXivCyqD2zC50oVopY_btgEuZSFVHPxid2mtEfEplJywl4XcBj67H66A_nkgtc96HGE7UAQLOQdwWIGjzPYuF-74MPp35-_CTY7CpEOEDwY3Zuh19n5LZx0P1C6cBrs4E0eC-G3yzuIlI5kMuQA-niM4cUddKb-DFt3Ig-rMERHEUwga51x5HP6zD5a3Sf68pZT9rz6tlneF-un7w_LxbowosRcNEqjQdS2Q1VZ3nRdrbgsdUmdpNoqrZpKW6GwFnbeyM5Sp0RTSexUVQoj5JTxa6-JIaVItj3G8bp4bjm2F7ntVW47ym0vcttqZMSVSeOu31Js9-MHo7f0DvQfe3eA8A</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Benli, F. B.</creator><creator>İlhan, O. A.</creator><creator>Kasimov, Sh. G.</creator><creator>Xaitboyev, G. S.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>A multidimensional analogue of the A. N. Tikhonov’s Theorem on calculating values of a function with respect to approximately given Fourier coefficients</title><author>Benli, F. B. ; İlhan, O. A. ; Kasimov, Sh. G. ; Xaitboyev, G. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-98a0c00afb086f19bb78134a4eb3e7f8a896af28072f593bfeb829630b8642c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benli, F. B.</creatorcontrib><creatorcontrib>İlhan, O. A.</creatorcontrib><creatorcontrib>Kasimov, Sh. G.</creatorcontrib><creatorcontrib>Xaitboyev, G. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benli, F. B.</au><au>İlhan, O. A.</au><au>Kasimov, Sh. G.</au><au>Xaitboyev, G. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multidimensional analogue of the A. N. Tikhonov’s Theorem on calculating values of a function with respect to approximately given Fourier coefficients</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>46</volume><issue>4</issue><spage>655</spage><epage>665</epage><pages>655-665</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>In this paper, we study the problem of approximation to reconstruct the value of a function of several variables from the approximate values of the Fourier coefficients of a function at a given fixed point. A theorem on the reconstruction of the value of a function with several variables at any given fixed point with a small error is given.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-020-0054-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2020-12, Vol.46 (4), p.655-665
issn 0133-3852
1588-273X
language eng
recordid cdi_crossref_primary_10_1007_s10476_020_0054_6
source Springer Nature
subjects Analysis
Mathematics
Mathematics and Statistics
title A multidimensional analogue of the A. N. Tikhonov’s Theorem on calculating values of a function with respect to approximately given Fourier coefficients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multidimensional%20analogue%20of%20the%20A.%20N.%20Tikhonov%E2%80%99s%20Theorem%20on%20calculating%20values%20of%20a%20function%20with%20respect%20to%20approximately%20given%20Fourier%20coefficients&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Benli,%20F.%20B.&rft.date=2020-12-01&rft.volume=46&rft.issue=4&rft.spage=655&rft.epage=665&rft.pages=655-665&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-020-0054-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s10476_020_0054_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-98a0c00afb086f19bb78134a4eb3e7f8a896af28072f593bfeb829630b8642c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true