Loading…

On the hyperbolic group and subordinated integrals as operators on sequence Banach spaces

We show that the composition hyperbolic group in the unit disc, once transferred to act on sequence spaces, is bounded on $$\ell^p$$ ℓ p if and only if $${p=2}$$ p = 2 . We introduce some integral operators subordinated to that group which are natural generalizations of classical operators on sequen...

Full description

Saved in:
Bibliographic Details
Published in:Analysis mathematica (Budapest) 2024-09
Main Authors: Abadias, L., Galé, J. E., Miana, P. J., Oliva-Maza, J.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c172t-337f9d27b72cef88153f4508ceda644efc178603758777d222843e6d259dad373
container_end_page
container_issue
container_start_page
container_title Analysis mathematica (Budapest)
container_volume
creator Abadias, L.
Galé, J. E.
Miana, P. J.
Oliva-Maza, J.
description We show that the composition hyperbolic group in the unit disc, once transferred to act on sequence spaces, is bounded on $$\ell^p$$ ℓ p if and only if $${p=2}$$ p = 2 . We introduce some integral operators subordinated to that group which are natural generalizations of classical operators on sequences. For the description of such operators, we use some combinatorial identities which look interesting in their own.
doi_str_mv 10.1007/s10476-024-00047-4
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10476_024_00047_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10476_024_00047_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-337f9d27b72cef88153f4508ceda644efc178603758777d222843e6d259dad373</originalsourceid><addsrcrecordid>eNotkL1OwzAURi0EEqXwAkx-AYPt68TuCBV_UqUuIMFkOfZNE1ScYCdD3x5Dmb4zHH3DIeRa8BvBub7NgitdMy4V47wgUydkISpjmNTwfkoWXAAwMJU8Jxc5fxZpVRtYkI9tpFOHtDuMmJph33u6S8M8UhcDzXMzpNBHN2GgfZxwl9w-U5fpUGw3DalQpBm_Z4we6b2Lznc0j85jviRnbbHx6n-X5O3x4XX9zDbbp5f13YZ5oeXEAHS7ClI3WnpsjREVtKrixmNwtVLYFs3UHHRltNZBSmkUYB1ktQougIYlkcdfn4acE7Z2TP2XSwcruP2NY49xbIlj_-JYBT_S71hl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the hyperbolic group and subordinated integrals as operators on sequence Banach spaces</title><source>Springer Link</source><creator>Abadias, L. ; Galé, J. E. ; Miana, P. J. ; Oliva-Maza, J.</creator><creatorcontrib>Abadias, L. ; Galé, J. E. ; Miana, P. J. ; Oliva-Maza, J.</creatorcontrib><description>We show that the composition hyperbolic group in the unit disc, once transferred to act on sequence spaces, is bounded on $$\ell^p$$ ℓ p if and only if $${p=2}$$ p = 2 . We introduce some integral operators subordinated to that group which are natural generalizations of classical operators on sequences. For the description of such operators, we use some combinatorial identities which look interesting in their own.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-024-00047-4</identifier><language>eng</language><ispartof>Analysis mathematica (Budapest), 2024-09</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-337f9d27b72cef88153f4508ceda644efc178603758777d222843e6d259dad373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abadias, L.</creatorcontrib><creatorcontrib>Galé, J. E.</creatorcontrib><creatorcontrib>Miana, P. J.</creatorcontrib><creatorcontrib>Oliva-Maza, J.</creatorcontrib><title>On the hyperbolic group and subordinated integrals as operators on sequence Banach spaces</title><title>Analysis mathematica (Budapest)</title><description>We show that the composition hyperbolic group in the unit disc, once transferred to act on sequence spaces, is bounded on $$\ell^p$$ ℓ p if and only if $${p=2}$$ p = 2 . We introduce some integral operators subordinated to that group which are natural generalizations of classical operators on sequences. For the description of such operators, we use some combinatorial identities which look interesting in their own.</description><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkL1OwzAURi0EEqXwAkx-AYPt68TuCBV_UqUuIMFkOfZNE1ScYCdD3x5Dmb4zHH3DIeRa8BvBub7NgitdMy4V47wgUydkISpjmNTwfkoWXAAwMJU8Jxc5fxZpVRtYkI9tpFOHtDuMmJph33u6S8M8UhcDzXMzpNBHN2GgfZxwl9w-U5fpUGw3DalQpBm_Z4we6b2Lznc0j85jviRnbbHx6n-X5O3x4XX9zDbbp5f13YZ5oeXEAHS7ClI3WnpsjREVtKrixmNwtVLYFs3UHHRltNZBSmkUYB1ktQougIYlkcdfn4acE7Z2TP2XSwcruP2NY49xbIlj_-JYBT_S71hl</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Abadias, L.</creator><creator>Galé, J. E.</creator><creator>Miana, P. J.</creator><creator>Oliva-Maza, J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240915</creationdate><title>On the hyperbolic group and subordinated integrals as operators on sequence Banach spaces</title><author>Abadias, L. ; Galé, J. E. ; Miana, P. J. ; Oliva-Maza, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-337f9d27b72cef88153f4508ceda644efc178603758777d222843e6d259dad373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abadias, L.</creatorcontrib><creatorcontrib>Galé, J. E.</creatorcontrib><creatorcontrib>Miana, P. J.</creatorcontrib><creatorcontrib>Oliva-Maza, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadias, L.</au><au>Galé, J. E.</au><au>Miana, P. J.</au><au>Oliva-Maza, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the hyperbolic group and subordinated integrals as operators on sequence Banach spaces</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><date>2024-09-15</date><risdate>2024</risdate><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>We show that the composition hyperbolic group in the unit disc, once transferred to act on sequence spaces, is bounded on $$\ell^p$$ ℓ p if and only if $${p=2}$$ p = 2 . We introduce some integral operators subordinated to that group which are natural generalizations of classical operators on sequences. For the description of such operators, we use some combinatorial identities which look interesting in their own.</abstract><doi>10.1007/s10476-024-00047-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2024-09
issn 0133-3852
1588-273X
language eng
recordid cdi_crossref_primary_10_1007_s10476_024_00047_4
source Springer Link
title On the hyperbolic group and subordinated integrals as operators on sequence Banach spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20hyperbolic%20group%20and%20subordinated%20integrals%20as%20operators%20on%20sequence%20Banach%20spaces&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Abadias,%20L.&rft.date=2024-09-15&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-024-00047-4&rft_dat=%3Ccrossref%3E10_1007_s10476_024_00047_4%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-337f9d27b72cef88153f4508ceda644efc178603758777d222843e6d259dad373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true