Loading…
Slither: finding local dense subgraphs measured by average degree
Searching for dense subgraphs is the crux of a variety of graph mining applications. It is also meaningful to investigate problems of finding local dense subgraphs related to particular nodes, especially for large real-world graphs. However, none of the problems focus on maximizing the average degre...
Saved in:
Published in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-03, Vol.52 (5), p.5034-5046 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-bfc516653c4463f339912fecfc6fa1ee3c8fdb6d24eeb89ff23bba225fc4243c3 |
container_end_page | 5046 |
container_issue | 5 |
container_start_page | 5034 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 52 |
creator | Deng, Zixuan Xiang, Yanping |
description | Searching for dense subgraphs is the crux of a variety of graph mining applications. It is also meaningful to investigate problems of finding local dense subgraphs related to particular nodes, especially for large real-world graphs. However, none of the problems focus on maximizing the average degrees of the found subgraphs. We formulate the MDS-N problem, which aims to find such a subgraph with the maximum average degree, near or containing a given node in an undirected graph. We propose the Slither algorithm and the Slither PageRank (PR) algorithm, built on a reduction from the MDS-N problem to the minimum conductance problem and the Lovász-Simonovits Theorem of random walks. A simple hierarchically repetition frame is also proposed to advance the two algorithms. Experiments conducted on both unipartite graphs and bipartite graphs show the effectiveness, stability, and scalability of our algorithms. Additionally, we verify the MDS-N problem and the proposed algorithms on a large social network Twitter, the experimental results of which show our algorithms can successfully detect local fraud-related subgraphs based on particular fraudulent user accounts. |
doi_str_mv | 10.1007/s10489-021-02684-w |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10489_021_02684_w</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10489_021_02684_w</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-bfc516653c4463f339912fecfc6fa1ee3c8fdb6d24eeb89ff23bba225fc4243c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoOFZfwFVeIJq_yUzclaJWKLhQwV1IMjfTKdNpSTqWvr3Rce3icDfnuxw-hG4ZvWOUVveJUVlrQjnLUbUkxzNUsLISpJK6OkcF1VwSpfTnJbpKaUMpFYKyAs3f-u6whviAQzc03dDifudtjxsYEuA0ujba_TrhLdg0RmiwO2H7BdG2kDttBLhGF8H2CW7-7gx9PD2-L5Zk9fr8spiviOeSH4gLvmRKlcJLqUQQQmvGA_jgVbAMQPg6NE41XAK4WofAhXOW8zJ4yaXwYob49NfHXUoRgtnHbmvjyTBqfiSYSYLJEsyvBHPMkJiglMtDC9FsdmMc8s7_qG8JDWGj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Slither: finding local dense subgraphs measured by average degree</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Deng, Zixuan ; Xiang, Yanping</creator><creatorcontrib>Deng, Zixuan ; Xiang, Yanping</creatorcontrib><description>Searching for dense subgraphs is the crux of a variety of graph mining applications. It is also meaningful to investigate problems of finding local dense subgraphs related to particular nodes, especially for large real-world graphs. However, none of the problems focus on maximizing the average degrees of the found subgraphs. We formulate the MDS-N problem, which aims to find such a subgraph with the maximum average degree, near or containing a given node in an undirected graph. We propose the Slither algorithm and the Slither PageRank (PR) algorithm, built on a reduction from the MDS-N problem to the minimum conductance problem and the Lovász-Simonovits Theorem of random walks. A simple hierarchically repetition frame is also proposed to advance the two algorithms. Experiments conducted on both unipartite graphs and bipartite graphs show the effectiveness, stability, and scalability of our algorithms. Additionally, we verify the MDS-N problem and the proposed algorithms on a large social network Twitter, the experimental results of which show our algorithms can successfully detect local fraud-related subgraphs based on particular fraudulent user accounts.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-021-02684-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Machines ; Manufacturing ; Mechanical Engineering ; Processes</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2022-03, Vol.52 (5), p.5034-5046</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-bfc516653c4463f339912fecfc6fa1ee3c8fdb6d24eeb89ff23bba225fc4243c3</cites><orcidid>0000-0002-8026-4035 ; 0000-0002-9477-284X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Deng, Zixuan</creatorcontrib><creatorcontrib>Xiang, Yanping</creatorcontrib><title>Slither: finding local dense subgraphs measured by average degree</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Searching for dense subgraphs is the crux of a variety of graph mining applications. It is also meaningful to investigate problems of finding local dense subgraphs related to particular nodes, especially for large real-world graphs. However, none of the problems focus on maximizing the average degrees of the found subgraphs. We formulate the MDS-N problem, which aims to find such a subgraph with the maximum average degree, near or containing a given node in an undirected graph. We propose the Slither algorithm and the Slither PageRank (PR) algorithm, built on a reduction from the MDS-N problem to the minimum conductance problem and the Lovász-Simonovits Theorem of random walks. A simple hierarchically repetition frame is also proposed to advance the two algorithms. Experiments conducted on both unipartite graphs and bipartite graphs show the effectiveness, stability, and scalability of our algorithms. Additionally, we verify the MDS-N problem and the proposed algorithms on a large social network Twitter, the experimental results of which show our algorithms can successfully detect local fraud-related subgraphs based on particular fraudulent user accounts.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoOFZfwFVeIJq_yUzclaJWKLhQwV1IMjfTKdNpSTqWvr3Rce3icDfnuxw-hG4ZvWOUVveJUVlrQjnLUbUkxzNUsLISpJK6OkcF1VwSpfTnJbpKaUMpFYKyAs3f-u6whviAQzc03dDifudtjxsYEuA0ujba_TrhLdg0RmiwO2H7BdG2kDttBLhGF8H2CW7-7gx9PD2-L5Zk9fr8spiviOeSH4gLvmRKlcJLqUQQQmvGA_jgVbAMQPg6NE41XAK4WofAhXOW8zJ4yaXwYob49NfHXUoRgtnHbmvjyTBqfiSYSYLJEsyvBHPMkJiglMtDC9FsdmMc8s7_qG8JDWGj</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Deng, Zixuan</creator><creator>Xiang, Yanping</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8026-4035</orcidid><orcidid>https://orcid.org/0000-0002-9477-284X</orcidid></search><sort><creationdate>20220301</creationdate><title>Slither: finding local dense subgraphs measured by average degree</title><author>Deng, Zixuan ; Xiang, Yanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-bfc516653c4463f339912fecfc6fa1ee3c8fdb6d24eeb89ff23bba225fc4243c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zixuan</creatorcontrib><creatorcontrib>Xiang, Yanping</creatorcontrib><collection>CrossRef</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zixuan</au><au>Xiang, Yanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slither: finding local dense subgraphs measured by average degree</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>52</volume><issue>5</issue><spage>5034</spage><epage>5046</epage><pages>5034-5046</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Searching for dense subgraphs is the crux of a variety of graph mining applications. It is also meaningful to investigate problems of finding local dense subgraphs related to particular nodes, especially for large real-world graphs. However, none of the problems focus on maximizing the average degrees of the found subgraphs. We formulate the MDS-N problem, which aims to find such a subgraph with the maximum average degree, near or containing a given node in an undirected graph. We propose the Slither algorithm and the Slither PageRank (PR) algorithm, built on a reduction from the MDS-N problem to the minimum conductance problem and the Lovász-Simonovits Theorem of random walks. A simple hierarchically repetition frame is also proposed to advance the two algorithms. Experiments conducted on both unipartite graphs and bipartite graphs show the effectiveness, stability, and scalability of our algorithms. Additionally, we verify the MDS-N problem and the proposed algorithms on a large social network Twitter, the experimental results of which show our algorithms can successfully detect local fraud-related subgraphs based on particular fraudulent user accounts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-021-02684-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8026-4035</orcidid><orcidid>https://orcid.org/0000-0002-9477-284X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2022-03, Vol.52 (5), p.5034-5046 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10489_021_02684_w |
source | ABI/INFORM global; Springer Nature |
subjects | Artificial Intelligence Computer Science Machines Manufacturing Mechanical Engineering Processes |
title | Slither: finding local dense subgraphs measured by average degree |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slither:%20finding%20local%20dense%20subgraphs%20measured%20by%20average%20degree&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Deng,%20Zixuan&rft.date=2022-03-01&rft.volume=52&rft.issue=5&rft.spage=5034&rft.epage=5046&rft.pages=5034-5046&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-021-02684-w&rft_dat=%3Ccrossref_sprin%3E10_1007_s10489_021_02684_w%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-bfc516653c4463f339912fecfc6fa1ee3c8fdb6d24eeb89ff23bba225fc4243c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |