Loading…

The Numerical Simulation of Diesel Spray Combustion with LES-CMC

A Large Eddy Simulation (LES) approach together with the Conditional Moment Closure (CMC) method have been used for the simulation of spray combustion in engine-like conditions. The strategy consists of coupling an academic CMC code with the commercial CFD software Star-CD (CD-adapco). Two issues ha...

Full description

Saved in:
Bibliographic Details
Published in:Flow, turbulence and combustion turbulence and combustion, 2012-12, Vol.89 (4), p.651-673
Main Authors: Bottone, Francesco, Kronenburg, Andreas, Gosman, David, Marquis, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Large Eddy Simulation (LES) approach together with the Conditional Moment Closure (CMC) method have been used for the simulation of spray combustion in engine-like conditions. The strategy consists of coupling an academic CMC code with the commercial CFD software Star-CD (CD-adapco). Two issues have been investigated: firstly, the applicability of conventional spray models to LES and secondly, LES-CMC for spray combustion. Conventional spray models that were originally developed for use in Reynolds-averaged equations have been assessed for their applicability within the LES framework by conducting non-reacting spray computations. Liquid core penetration, spray spreading angle and vapour phase penetration have been compared to the available experimental data and the agreement between LES and experiments is satisfactory. Several reacting spray calculations have been performed with a range of initial mixture and temperature conditions, which mimic Diesel engine configurations. The computed auto-ignition time and flame lift-off length are in good agreement with the experimental data. Despite the uncertainties associated with the spray models and the chemistry, the results illustrate that the LES-CMC methodology can reproduce well the experimental results.
ISSN:1386-6184
1573-1987
DOI:10.1007/s10494-012-9415-y