Loading…

3D-CT(Computer Tomography) Measurement of an Instantaneous Density Distribution of Turbulent Flames with a Multi-Directional Quantitative Schlieren Camera (Reconstructions of High-Speed Premixed Burner Flames with Different Flow Velocities)

In order to provide a suitable technique for 3D observation of high speed turbulent flames, non-scanning 3D-CT(Computer Tomography) technique using a multi-directional quantitative schlieren system with flash light source, is proposed for instantaneous density distribution of unsteady premixed flame...

Full description

Saved in:
Bibliographic Details
Published in:Flow, turbulence and combustion turbulence and combustion, 2016-04, Vol.96 (3), p.819-835
Main Authors: Ishino, Yojiro, Hayashi, Naoki, Bt Abd Razak, Ili Fatimah, Kato, Takahiro, Kurimoto, Yudai, Saiki, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to provide a suitable technique for 3D observation of high speed turbulent flames, non-scanning 3D-CT(Computer Tomography) technique using a multi-directional quantitative schlieren system with flash light source, is proposed for instantaneous density distribution of unsteady premixed flames. This “schlieren 3D-CT” is based on (i)simultaneous acquisition of flash-light schlieren images taken from numerous directions, and (ii) 3D-CT reconstruction of the images by an appropriate CT algorithm. In this paper, first, as a preliminary research, 3D-CT reconstruction of non-axisymmetric steady flame is made with a single-directional quantitative schlieren system. Next, with custom-made 20 directional schlieren camera, instantaneous density distributions of a high-speed turbulent flames of nozzle exit velocities of 8.0 and 10.0 m/s has been CT-reconstructed. The 3D-views of the reconstructed flame front shape clearly give the information of the flame structure with fine scale corrugations. Based on the distributions, area-enlargement rates of the flame front area are derived, and investigated.
ISSN:1386-6184
1573-1987
DOI:10.1007/s10494-015-9658-5