Loading…
Nonautonomous systems with transversal homoclinic structures under discretization
We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error e...
Saved in:
Published in: | BIT Numerical Mathematics 2016-06, Vol.56 (2), p.605-631 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3 |
container_end_page | 631 |
container_issue | 2 |
container_start_page | 605 |
container_title | BIT Numerical Mathematics |
container_volume | 56 |
creator | Girod, Alina Hüls, Thorsten |
description | We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error estimates for one-step discretizations of transversal homoclinic orbits. Secondly, we extend an algorithm by England, Krauskopf, Osinga to nonautonomous systems and illustrate transversally intersecting fibers along homoclinic orbits for three examples. The first one is constructed artificially in order to study numerical errors, while the second one is a periodically forced model that reveals the influence of underlying autonomous dynamics. The third example originates from mathematical biology. |
doi_str_mv | 10.1007/s10543-015-0567-8 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10543_015_0567_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10543_015_0567_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vEL3JTGaSpRR_CkURdB0ymcROaRPJzSj16Z1S167O4p7vcvgIueZwwwHaW-Qg64oBlwxk0zJ1QmZctoJpLuQpmQFAwypVyXNygbgBELrh1Yy8Pqdox5Ji2qURKe6x-B3S76Gsack24pfPaLd0Pd3ddoiDo1jy6MqYPdIx9j7TfkCXfRl-bBlSvCRnwW7RX_3lnLw_3L8tntjq5XG5uFsxJ5QqrHbeKS6lhtA1jdfSCd25FjQIy7kKKkBQvK6C1l1opGv6ttVTR1S67sF31Zzw41-XE2L2wXzmYWfz3nAwByfm6MRMTszBiVETI44MTt344bPZpDHHaeY_0C9Md2bv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonautonomous systems with transversal homoclinic structures under discretization</title><source>Springer Nature</source><creator>Girod, Alina ; Hüls, Thorsten</creator><creatorcontrib>Girod, Alina ; Hüls, Thorsten</creatorcontrib><description>We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error estimates for one-step discretizations of transversal homoclinic orbits. Secondly, we extend an algorithm by England, Krauskopf, Osinga to nonautonomous systems and illustrate transversally intersecting fibers along homoclinic orbits for three examples. The first one is constructed artificially in order to study numerical errors, while the second one is a periodically forced model that reveals the influence of underlying autonomous dynamics. The third example originates from mathematical biology.</description><identifier>ISSN: 0006-3835</identifier><identifier>EISSN: 1572-9125</identifier><identifier>DOI: 10.1007/s10543-015-0567-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Numeric Computing</subject><ispartof>BIT Numerical Mathematics, 2016-06, Vol.56 (2), p.605-631</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3</citedby><cites>FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Girod, Alina</creatorcontrib><creatorcontrib>Hüls, Thorsten</creatorcontrib><title>Nonautonomous systems with transversal homoclinic structures under discretization</title><title>BIT Numerical Mathematics</title><addtitle>Bit Numer Math</addtitle><description>We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error estimates for one-step discretizations of transversal homoclinic orbits. Secondly, we extend an algorithm by England, Krauskopf, Osinga to nonautonomous systems and illustrate transversally intersecting fibers along homoclinic orbits for three examples. The first one is constructed artificially in order to study numerical errors, while the second one is a periodically forced model that reveals the influence of underlying autonomous dynamics. The third example originates from mathematical biology.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numeric Computing</subject><issn>0006-3835</issn><issn>1572-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vEL3JTGaSpRR_CkURdB0ymcROaRPJzSj16Z1S167O4p7vcvgIueZwwwHaW-Qg64oBlwxk0zJ1QmZctoJpLuQpmQFAwypVyXNygbgBELrh1Yy8Pqdox5Ji2qURKe6x-B3S76Gsack24pfPaLd0Pd3ddoiDo1jy6MqYPdIx9j7TfkCXfRl-bBlSvCRnwW7RX_3lnLw_3L8tntjq5XG5uFsxJ5QqrHbeKS6lhtA1jdfSCd25FjQIy7kKKkBQvK6C1l1opGv6ttVTR1S67sF31Zzw41-XE2L2wXzmYWfz3nAwByfm6MRMTszBiVETI44MTt344bPZpDHHaeY_0C9Md2bv</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Girod, Alina</creator><creator>Hüls, Thorsten</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160601</creationdate><title>Nonautonomous systems with transversal homoclinic structures under discretization</title><author>Girod, Alina ; Hüls, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numeric Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girod, Alina</creatorcontrib><creatorcontrib>Hüls, Thorsten</creatorcontrib><collection>CrossRef</collection><jtitle>BIT Numerical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girod, Alina</au><au>Hüls, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonautonomous systems with transversal homoclinic structures under discretization</atitle><jtitle>BIT Numerical Mathematics</jtitle><stitle>Bit Numer Math</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>56</volume><issue>2</issue><spage>605</spage><epage>631</epage><pages>605-631</pages><issn>0006-3835</issn><eissn>1572-9125</eissn><abstract>We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error estimates for one-step discretizations of transversal homoclinic orbits. Secondly, we extend an algorithm by England, Krauskopf, Osinga to nonautonomous systems and illustrate transversally intersecting fibers along homoclinic orbits for three examples. The first one is constructed artificially in order to study numerical errors, while the second one is a periodically forced model that reveals the influence of underlying autonomous dynamics. The third example originates from mathematical biology.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10543-015-0567-8</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3835 |
ispartof | BIT Numerical Mathematics, 2016-06, Vol.56 (2), p.605-631 |
issn | 0006-3835 1572-9125 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10543_015_0567_8 |
source | Springer Nature |
subjects | Computational Mathematics and Numerical Analysis Mathematics Mathematics and Statistics Numeric Computing |
title | Nonautonomous systems with transversal homoclinic structures under discretization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonautonomous%20systems%20with%20transversal%20homoclinic%20structures%20under%20discretization&rft.jtitle=BIT%20Numerical%20Mathematics&rft.au=Girod,%20Alina&rft.date=2016-06-01&rft.volume=56&rft.issue=2&rft.spage=605&rft.epage=631&rft.pages=605-631&rft.issn=0006-3835&rft.eissn=1572-9125&rft_id=info:doi/10.1007/s10543-015-0567-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s10543_015_0567_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |