Loading…

Nonautonomous systems with transversal homoclinic structures under discretization

We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error e...

Full description

Saved in:
Bibliographic Details
Published in:BIT Numerical Mathematics 2016-06, Vol.56 (2), p.605-631
Main Authors: Girod, Alina, Hüls, Thorsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3
cites cdi_FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3
container_end_page 631
container_issue 2
container_start_page 605
container_title BIT Numerical Mathematics
container_volume 56
creator Girod, Alina
Hüls, Thorsten
description We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error estimates for one-step discretizations of transversal homoclinic orbits. Secondly, we extend an algorithm by England, Krauskopf, Osinga to nonautonomous systems and illustrate transversally intersecting fibers along homoclinic orbits for three examples. The first one is constructed artificially in order to study numerical errors, while the second one is a periodically forced model that reveals the influence of underlying autonomous dynamics. The third example originates from mathematical biology.
doi_str_mv 10.1007/s10543-015-0567-8
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10543_015_0567_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10543_015_0567_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vEL3JTGaSpRR_CkURdB0ymcROaRPJzSj16Z1S167O4p7vcvgIueZwwwHaW-Qg64oBlwxk0zJ1QmZctoJpLuQpmQFAwypVyXNygbgBELrh1Yy8Pqdox5Ji2qURKe6x-B3S76Gsack24pfPaLd0Pd3ddoiDo1jy6MqYPdIx9j7TfkCXfRl-bBlSvCRnwW7RX_3lnLw_3L8tntjq5XG5uFsxJ5QqrHbeKS6lhtA1jdfSCd25FjQIy7kKKkBQvK6C1l1opGv6ttVTR1S67sF31Zzw41-XE2L2wXzmYWfz3nAwByfm6MRMTszBiVETI44MTt344bPZpDHHaeY_0C9Md2bv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonautonomous systems with transversal homoclinic structures under discretization</title><source>Springer Nature</source><creator>Girod, Alina ; Hüls, Thorsten</creator><creatorcontrib>Girod, Alina ; Hüls, Thorsten</creatorcontrib><description>We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error estimates for one-step discretizations of transversal homoclinic orbits. Secondly, we extend an algorithm by England, Krauskopf, Osinga to nonautonomous systems and illustrate transversally intersecting fibers along homoclinic orbits for three examples. The first one is constructed artificially in order to study numerical errors, while the second one is a periodically forced model that reveals the influence of underlying autonomous dynamics. The third example originates from mathematical biology.</description><identifier>ISSN: 0006-3835</identifier><identifier>EISSN: 1572-9125</identifier><identifier>DOI: 10.1007/s10543-015-0567-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Numeric Computing</subject><ispartof>BIT Numerical Mathematics, 2016-06, Vol.56 (2), p.605-631</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3</citedby><cites>FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Girod, Alina</creatorcontrib><creatorcontrib>Hüls, Thorsten</creatorcontrib><title>Nonautonomous systems with transversal homoclinic structures under discretization</title><title>BIT Numerical Mathematics</title><addtitle>Bit Numer Math</addtitle><description>We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error estimates for one-step discretizations of transversal homoclinic orbits. Secondly, we extend an algorithm by England, Krauskopf, Osinga to nonautonomous systems and illustrate transversally intersecting fibers along homoclinic orbits for three examples. The first one is constructed artificially in order to study numerical errors, while the second one is a periodically forced model that reveals the influence of underlying autonomous dynamics. The third example originates from mathematical biology.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numeric Computing</subject><issn>0006-3835</issn><issn>1572-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vEL3JTGaSpRR_CkURdB0ymcROaRPJzSj16Z1S167O4p7vcvgIueZwwwHaW-Qg64oBlwxk0zJ1QmZctoJpLuQpmQFAwypVyXNygbgBELrh1Yy8Pqdox5Ji2qURKe6x-B3S76Gsack24pfPaLd0Pd3ddoiDo1jy6MqYPdIx9j7TfkCXfRl-bBlSvCRnwW7RX_3lnLw_3L8tntjq5XG5uFsxJ5QqrHbeKS6lhtA1jdfSCd25FjQIy7kKKkBQvK6C1l1opGv6ttVTR1S67sF31Zzw41-XE2L2wXzmYWfz3nAwByfm6MRMTszBiVETI44MTt344bPZpDHHaeY_0C9Md2bv</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Girod, Alina</creator><creator>Hüls, Thorsten</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160601</creationdate><title>Nonautonomous systems with transversal homoclinic structures under discretization</title><author>Girod, Alina ; Hüls, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numeric Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girod, Alina</creatorcontrib><creatorcontrib>Hüls, Thorsten</creatorcontrib><collection>CrossRef</collection><jtitle>BIT Numerical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girod, Alina</au><au>Hüls, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonautonomous systems with transversal homoclinic structures under discretization</atitle><jtitle>BIT Numerical Mathematics</jtitle><stitle>Bit Numer Math</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>56</volume><issue>2</issue><spage>605</spage><epage>631</epage><pages>605-631</pages><issn>0006-3835</issn><eissn>1572-9125</eissn><abstract>We consider homoclinic orbits in continuous time nonautonomous dynamical systems. Unlike the autonomous case, stable and unstable fiber bundles that generalize stable and unstable manifolds, typically intersect transversally in isolated points. In the first part, we establish persistence and error estimates for one-step discretizations of transversal homoclinic orbits. Secondly, we extend an algorithm by England, Krauskopf, Osinga to nonautonomous systems and illustrate transversally intersecting fibers along homoclinic orbits for three examples. The first one is constructed artificially in order to study numerical errors, while the second one is a periodically forced model that reveals the influence of underlying autonomous dynamics. The third example originates from mathematical biology.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10543-015-0567-8</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3835
ispartof BIT Numerical Mathematics, 2016-06, Vol.56 (2), p.605-631
issn 0006-3835
1572-9125
language eng
recordid cdi_crossref_primary_10_1007_s10543_015_0567_8
source Springer Nature
subjects Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Numeric Computing
title Nonautonomous systems with transversal homoclinic structures under discretization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonautonomous%20systems%20with%20transversal%20homoclinic%20structures%20under%20discretization&rft.jtitle=BIT%20Numerical%20Mathematics&rft.au=Girod,%20Alina&rft.date=2016-06-01&rft.volume=56&rft.issue=2&rft.spage=605&rft.epage=631&rft.pages=605-631&rft.issn=0006-3835&rft.eissn=1572-9125&rft_id=info:doi/10.1007/s10543-015-0567-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s10543_015_0567_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-4cec815590fb66e95c29bc70902a118f8f0f8143f99bf65c6d779c292394d0eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true