Loading…

Information sets in abelian codes: defining sets and Groebner basis

In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999, 2011 ) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21, 1977 ) in the case...

Full description

Saved in:
Bibliographic Details
Published in:Designs, codes, and cryptography codes, and cryptography, 2014, Vol.70 (1-2), p.175-188
Main Authors: Bernal, José Joaquín, Simón, Juan Jacobo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03
cites cdi_FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03
container_end_page 188
container_issue 1-2
container_start_page 175
container_title Designs, codes, and cryptography
container_volume 70
creator Bernal, José Joaquín
Simón, Juan Jacobo
description In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999, 2011 ) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21, 1977 ) in the case of binary two-dimensional cyclic (TDC) codes. On the other hand, Sakata (IEEE Trans Inf Theory IT-27(5):556–565, 1981 ) showed a method for constructing information sets for binary TDC codes based on the computation of Groebner basis which agrees with the information set obtained by Imai. Later, Chabanne (IEEE Trans Inf Theory 38(6):1826–1829, 1992 ) presents a generalization of the permutation decoding algorithm for binary abelian codes by using Groebner basis, and as a part of his method he constructs an information set following the same ideas introduced by Sakata. In this paper we show that, in the general case of q -ary multidimensional abelian codes, both methods, that based on Groebner basis and that defined in terms of the defining sets, also yield the same information set.
doi_str_mv 10.1007/s10623-012-9735-x
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10623_012_9735_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10623_012_9735_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMouFYfwFteIDpJNt2NNylaCwUveg7JJCkpbVaSFerbu2U9e5rDzDf8_0fIPYcHDtA9Vg5LIRlwwXQnFTtdkIarTrJO9ctL0oAWinEQ4prc1LoHAC5BNGS1yXEoRzumIdMaxkpTptaFQ7KZ4uBDfaI-xJRT3s17mz1dlyG4HAp1tqZ6S66iPdRw9zcX5PP15WP1xrbv683qectQ9P3IWvBacC-xR9CopHK9ljYKZzG66LV2LcYYhNceUQHoJWo_dUCNbSsCyAXh818sQ60lRPNV0tGWH8PBnC2Y2YKZLJizBXOaGDEzdbrNu1DMfvgueYr5D_QLYyphIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Information sets in abelian codes: defining sets and Groebner basis</title><source>Springer Link</source><creator>Bernal, José Joaquín ; Simón, Juan Jacobo</creator><creatorcontrib>Bernal, José Joaquín ; Simón, Juan Jacobo</creatorcontrib><description>In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999, 2011 ) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21, 1977 ) in the case of binary two-dimensional cyclic (TDC) codes. On the other hand, Sakata (IEEE Trans Inf Theory IT-27(5):556–565, 1981 ) showed a method for constructing information sets for binary TDC codes based on the computation of Groebner basis which agrees with the information set obtained by Imai. Later, Chabanne (IEEE Trans Inf Theory 38(6):1826–1829, 1992 ) presents a generalization of the permutation decoding algorithm for binary abelian codes by using Groebner basis, and as a part of his method he constructs an information set following the same ideas introduced by Sakata. In this paper we show that, in the general case of q -ary multidimensional abelian codes, both methods, that based on Groebner basis and that defined in terms of the defining sets, also yield the same information set.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-012-9735-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Computer Science ; Cryptology ; Data Structures and Information Theory ; Discrete Mathematics in Computer Science ; Information and Communication</subject><ispartof>Designs, codes, and cryptography, 2014, Vol.70 (1-2), p.175-188</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03</citedby><cites>FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bernal, José Joaquín</creatorcontrib><creatorcontrib>Simón, Juan Jacobo</creatorcontrib><title>Information sets in abelian codes: defining sets and Groebner basis</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999, 2011 ) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21, 1977 ) in the case of binary two-dimensional cyclic (TDC) codes. On the other hand, Sakata (IEEE Trans Inf Theory IT-27(5):556–565, 1981 ) showed a method for constructing information sets for binary TDC codes based on the computation of Groebner basis which agrees with the information set obtained by Imai. Later, Chabanne (IEEE Trans Inf Theory 38(6):1826–1829, 1992 ) presents a generalization of the permutation decoding algorithm for binary abelian codes by using Groebner basis, and as a part of his method he constructs an information set following the same ideas introduced by Sakata. In this paper we show that, in the general case of q -ary multidimensional abelian codes, both methods, that based on Groebner basis and that defined in terms of the defining sets, also yield the same information set.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Information and Communication</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMouFYfwFteIDpJNt2NNylaCwUveg7JJCkpbVaSFerbu2U9e5rDzDf8_0fIPYcHDtA9Vg5LIRlwwXQnFTtdkIarTrJO9ctL0oAWinEQ4prc1LoHAC5BNGS1yXEoRzumIdMaxkpTptaFQ7KZ4uBDfaI-xJRT3s17mz1dlyG4HAp1tqZ6S66iPdRw9zcX5PP15WP1xrbv683qectQ9P3IWvBacC-xR9CopHK9ljYKZzG66LV2LcYYhNceUQHoJWo_dUCNbSsCyAXh818sQ60lRPNV0tGWH8PBnC2Y2YKZLJizBXOaGDEzdbrNu1DMfvgueYr5D_QLYyphIA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Bernal, José Joaquín</creator><creator>Simón, Juan Jacobo</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>Information sets in abelian codes: defining sets and Groebner basis</title><author>Bernal, José Joaquín ; Simón, Juan Jacobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Information and Communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernal, José Joaquín</creatorcontrib><creatorcontrib>Simón, Juan Jacobo</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernal, José Joaquín</au><au>Simón, Juan Jacobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information sets in abelian codes: defining sets and Groebner basis</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2014</date><risdate>2014</risdate><volume>70</volume><issue>1-2</issue><spage>175</spage><epage>188</epage><pages>175-188</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999, 2011 ) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21, 1977 ) in the case of binary two-dimensional cyclic (TDC) codes. On the other hand, Sakata (IEEE Trans Inf Theory IT-27(5):556–565, 1981 ) showed a method for constructing information sets for binary TDC codes based on the computation of Groebner basis which agrees with the information set obtained by Imai. Later, Chabanne (IEEE Trans Inf Theory 38(6):1826–1829, 1992 ) presents a generalization of the permutation decoding algorithm for binary abelian codes by using Groebner basis, and as a part of his method he constructs an information set following the same ideas introduced by Sakata. In this paper we show that, in the general case of q -ary multidimensional abelian codes, both methods, that based on Groebner basis and that defined in terms of the defining sets, also yield the same information set.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10623-012-9735-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2014, Vol.70 (1-2), p.175-188
issn 0925-1022
1573-7586
language eng
recordid cdi_crossref_primary_10_1007_s10623_012_9735_x
source Springer Link
subjects Circuits
Coding and Information Theory
Computer Science
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Information and Communication
title Information sets in abelian codes: defining sets and Groebner basis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20sets%20in%20abelian%20codes:%20defining%20sets%20and%20Groebner%20basis&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Bernal,%20Jos%C3%A9%20Joaqu%C3%ADn&rft.date=2014&rft.volume=70&rft.issue=1-2&rft.spage=175&rft.epage=188&rft.pages=175-188&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-012-9735-x&rft_dat=%3Ccrossref_sprin%3E10_1007_s10623_012_9735_x%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true