Loading…
Information sets in abelian codes: defining sets and Groebner basis
In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999, 2011 ) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21, 1977 ) in the case...
Saved in:
Published in: | Designs, codes, and cryptography codes, and cryptography, 2014, Vol.70 (1-2), p.175-188 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03 |
container_end_page | 188 |
container_issue | 1-2 |
container_start_page | 175 |
container_title | Designs, codes, and cryptography |
container_volume | 70 |
creator | Bernal, José Joaquín Simón, Juan Jacobo |
description | In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999,
2011
) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21,
1977
) in the case of binary two-dimensional cyclic (TDC) codes. On the other hand, Sakata (IEEE Trans Inf Theory IT-27(5):556–565,
1981
) showed a method for constructing information sets for binary TDC codes based on the computation of Groebner basis which agrees with the information set obtained by Imai. Later, Chabanne (IEEE Trans Inf Theory 38(6):1826–1829,
1992
) presents a generalization of the permutation decoding algorithm for binary abelian codes by using Groebner basis, and as a part of his method he constructs an information set following the same ideas introduced by Sakata. In this paper we show that, in the general case of
q
-ary multidimensional abelian codes, both methods, that based on Groebner basis and that defined in terms of the defining sets, also yield the same information set. |
doi_str_mv | 10.1007/s10623-012-9735-x |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10623_012_9735_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10623_012_9735_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMouFYfwFteIDpJNt2NNylaCwUveg7JJCkpbVaSFerbu2U9e5rDzDf8_0fIPYcHDtA9Vg5LIRlwwXQnFTtdkIarTrJO9ctL0oAWinEQ4prc1LoHAC5BNGS1yXEoRzumIdMaxkpTptaFQ7KZ4uBDfaI-xJRT3s17mz1dlyG4HAp1tqZ6S66iPdRw9zcX5PP15WP1xrbv683qectQ9P3IWvBacC-xR9CopHK9ljYKZzG66LV2LcYYhNceUQHoJWo_dUCNbSsCyAXh818sQ60lRPNV0tGWH8PBnC2Y2YKZLJizBXOaGDEzdbrNu1DMfvgueYr5D_QLYyphIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Information sets in abelian codes: defining sets and Groebner basis</title><source>Springer Link</source><creator>Bernal, José Joaquín ; Simón, Juan Jacobo</creator><creatorcontrib>Bernal, José Joaquín ; Simón, Juan Jacobo</creatorcontrib><description>In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999,
2011
) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21,
1977
) in the case of binary two-dimensional cyclic (TDC) codes. On the other hand, Sakata (IEEE Trans Inf Theory IT-27(5):556–565,
1981
) showed a method for constructing information sets for binary TDC codes based on the computation of Groebner basis which agrees with the information set obtained by Imai. Later, Chabanne (IEEE Trans Inf Theory 38(6):1826–1829,
1992
) presents a generalization of the permutation decoding algorithm for binary abelian codes by using Groebner basis, and as a part of his method he constructs an information set following the same ideas introduced by Sakata. In this paper we show that, in the general case of
q
-ary multidimensional abelian codes, both methods, that based on Groebner basis and that defined in terms of the defining sets, also yield the same information set.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-012-9735-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Computer Science ; Cryptology ; Data Structures and Information Theory ; Discrete Mathematics in Computer Science ; Information and Communication</subject><ispartof>Designs, codes, and cryptography, 2014, Vol.70 (1-2), p.175-188</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03</citedby><cites>FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bernal, José Joaquín</creatorcontrib><creatorcontrib>Simón, Juan Jacobo</creatorcontrib><title>Information sets in abelian codes: defining sets and Groebner basis</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999,
2011
) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21,
1977
) in the case of binary two-dimensional cyclic (TDC) codes. On the other hand, Sakata (IEEE Trans Inf Theory IT-27(5):556–565,
1981
) showed a method for constructing information sets for binary TDC codes based on the computation of Groebner basis which agrees with the information set obtained by Imai. Later, Chabanne (IEEE Trans Inf Theory 38(6):1826–1829,
1992
) presents a generalization of the permutation decoding algorithm for binary abelian codes by using Groebner basis, and as a part of his method he constructs an information set following the same ideas introduced by Sakata. In this paper we show that, in the general case of
q
-ary multidimensional abelian codes, both methods, that based on Groebner basis and that defined in terms of the defining sets, also yield the same information set.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Information and Communication</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMouFYfwFteIDpJNt2NNylaCwUveg7JJCkpbVaSFerbu2U9e5rDzDf8_0fIPYcHDtA9Vg5LIRlwwXQnFTtdkIarTrJO9ctL0oAWinEQ4prc1LoHAC5BNGS1yXEoRzumIdMaxkpTptaFQ7KZ4uBDfaI-xJRT3s17mz1dlyG4HAp1tqZ6S66iPdRw9zcX5PP15WP1xrbv683qectQ9P3IWvBacC-xR9CopHK9ljYKZzG66LV2LcYYhNceUQHoJWo_dUCNbSsCyAXh818sQ60lRPNV0tGWH8PBnC2Y2YKZLJizBXOaGDEzdbrNu1DMfvgueYr5D_QLYyphIA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Bernal, José Joaquín</creator><creator>Simón, Juan Jacobo</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>Information sets in abelian codes: defining sets and Groebner basis</title><author>Bernal, José Joaquín ; Simón, Juan Jacobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Information and Communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernal, José Joaquín</creatorcontrib><creatorcontrib>Simón, Juan Jacobo</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernal, José Joaquín</au><au>Simón, Juan Jacobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information sets in abelian codes: defining sets and Groebner basis</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2014</date><risdate>2014</risdate><volume>70</volume><issue>1-2</issue><spage>175</spage><epage>188</epage><pages>175-188</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>In Bernal and Simón (IEEE Trans Inf Theory 57(12):7990–7999,
2011
) we introduced a technique to construct information sets for every semisimple abelian code by means of its defining set. This construction is a non trivial generalization of that given by Imai (Inf Control 34:1–21,
1977
) in the case of binary two-dimensional cyclic (TDC) codes. On the other hand, Sakata (IEEE Trans Inf Theory IT-27(5):556–565,
1981
) showed a method for constructing information sets for binary TDC codes based on the computation of Groebner basis which agrees with the information set obtained by Imai. Later, Chabanne (IEEE Trans Inf Theory 38(6):1826–1829,
1992
) presents a generalization of the permutation decoding algorithm for binary abelian codes by using Groebner basis, and as a part of his method he constructs an information set following the same ideas introduced by Sakata. In this paper we show that, in the general case of
q
-ary multidimensional abelian codes, both methods, that based on Groebner basis and that defined in terms of the defining sets, also yield the same information set.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10623-012-9735-x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2014, Vol.70 (1-2), p.175-188 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10623_012_9735_x |
source | Springer Link |
subjects | Circuits Coding and Information Theory Computer Science Cryptology Data Structures and Information Theory Discrete Mathematics in Computer Science Information and Communication |
title | Information sets in abelian codes: defining sets and Groebner basis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20sets%20in%20abelian%20codes:%20defining%20sets%20and%20Groebner%20basis&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Bernal,%20Jos%C3%A9%20Joaqu%C3%ADn&rft.date=2014&rft.volume=70&rft.issue=1-2&rft.spage=175&rft.epage=188&rft.pages=175-188&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-012-9735-x&rft_dat=%3Ccrossref_sprin%3E10_1007_s10623_012_9735_x%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-40d921d3c8c09c535b893af2bacfbfd99b4cffe2d9dcc50096c9d157c9c442e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |