Loading…

Campedelli surfaces with fundamental group of order 8

Let S be a Campedelli surface (a minimal surface of general type with p g  = 0, K 2  = 2), and an etale cover of degree 8. We prove that the canonical model of Y is a complete intersection of four quadrics . As a consequence, Y is the universal cover of S , the covering group G  = Gal( Y / S ) is th...

Full description

Saved in:
Bibliographic Details
Published in:Geometriae dedicata 2009-04, Vol.139 (1), p.49-55
Main Authors: Mendes Lopes, Margarida, Pardini, Rita, Reid, Miles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-2234986b96a9e90bd1c45337a516e0cd1637ae099ea44d176981fda0648590153
cites cdi_FETCH-LOGICAL-c288t-2234986b96a9e90bd1c45337a516e0cd1637ae099ea44d176981fda0648590153
container_end_page 55
container_issue 1
container_start_page 49
container_title Geometriae dedicata
container_volume 139
creator Mendes Lopes, Margarida
Pardini, Rita
Reid, Miles
description Let S be a Campedelli surface (a minimal surface of general type with p g  = 0, K 2  = 2), and an etale cover of degree 8. We prove that the canonical model of Y is a complete intersection of four quadrics . As a consequence, Y is the universal cover of S , the covering group G  = Gal( Y / S ) is the topological fundamental group π 1 S and G cannot be the dihedral group D 4 of order 8.
doi_str_mv 10.1007/s10711-008-9317-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10711_008_9317_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10711_008_9317_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2234986b96a9e90bd1c45337a516e0cd1637ae099ea44d176981fda0648590153</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqHwAez8A4YZx88linhJldjA2nJjp6TKS3YixN-Tqqy7mruYc3UPIfcIDwigHzOCRmQAhtkSNeMXpECpObOozCUpAIRiUkt5TW5yPgCA1ZoXRFa-n2KIXdfSvKTG1zHTn3b-ps0yBN_HYfYd3adxmejY0DGFmKi5JVeN73K8-78b8vXy_Fm9se3H63v1tGU1N2ZmnJfCGrWzyttoYRewFrIstZeoItQB1ZojWBu9EAG1sgab4EEJIy2gLDcET711GnNOsXFTanuffh2CO3q7k7dbvd3R2_GV4Scmr7_DPiZ3GJc0rDPPQH8InFlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Campedelli surfaces with fundamental group of order 8</title><source>Springer Link</source><creator>Mendes Lopes, Margarida ; Pardini, Rita ; Reid, Miles</creator><creatorcontrib>Mendes Lopes, Margarida ; Pardini, Rita ; Reid, Miles</creatorcontrib><description>Let S be a Campedelli surface (a minimal surface of general type with p g  = 0, K 2  = 2), and an etale cover of degree 8. We prove that the canonical model of Y is a complete intersection of four quadrics . As a consequence, Y is the universal cover of S , the covering group G  = Gal( Y / S ) is the topological fundamental group π 1 S and G cannot be the dihedral group D 4 of order 8.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-008-9317-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2009-04, Vol.139 (1), p.49-55</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2234986b96a9e90bd1c45337a516e0cd1637ae099ea44d176981fda0648590153</citedby><cites>FETCH-LOGICAL-c288t-2234986b96a9e90bd1c45337a516e0cd1637ae099ea44d176981fda0648590153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mendes Lopes, Margarida</creatorcontrib><creatorcontrib>Pardini, Rita</creatorcontrib><creatorcontrib>Reid, Miles</creatorcontrib><title>Campedelli surfaces with fundamental group of order 8</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Let S be a Campedelli surface (a minimal surface of general type with p g  = 0, K 2  = 2), and an etale cover of degree 8. We prove that the canonical model of Y is a complete intersection of four quadrics . As a consequence, Y is the universal cover of S , the covering group G  = Gal( Y / S ) is the topological fundamental group π 1 S and G cannot be the dihedral group D 4 of order 8.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqHwAez8A4YZx88linhJldjA2nJjp6TKS3YixN-Tqqy7mruYc3UPIfcIDwigHzOCRmQAhtkSNeMXpECpObOozCUpAIRiUkt5TW5yPgCA1ZoXRFa-n2KIXdfSvKTG1zHTn3b-ps0yBN_HYfYd3adxmejY0DGFmKi5JVeN73K8-78b8vXy_Fm9se3H63v1tGU1N2ZmnJfCGrWzyttoYRewFrIstZeoItQB1ZojWBu9EAG1sgab4EEJIy2gLDcET711GnNOsXFTanuffh2CO3q7k7dbvd3R2_GV4Scmr7_DPiZ3GJc0rDPPQH8InFlM</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Mendes Lopes, Margarida</creator><creator>Pardini, Rita</creator><creator>Reid, Miles</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090401</creationdate><title>Campedelli surfaces with fundamental group of order 8</title><author>Mendes Lopes, Margarida ; Pardini, Rita ; Reid, Miles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2234986b96a9e90bd1c45337a516e0cd1637ae099ea44d176981fda0648590153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendes Lopes, Margarida</creatorcontrib><creatorcontrib>Pardini, Rita</creatorcontrib><creatorcontrib>Reid, Miles</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendes Lopes, Margarida</au><au>Pardini, Rita</au><au>Reid, Miles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Campedelli surfaces with fundamental group of order 8</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>139</volume><issue>1</issue><spage>49</spage><epage>55</epage><pages>49-55</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Let S be a Campedelli surface (a minimal surface of general type with p g  = 0, K 2  = 2), and an etale cover of degree 8. We prove that the canonical model of Y is a complete intersection of four quadrics . As a consequence, Y is the universal cover of S , the covering group G  = Gal( Y / S ) is the topological fundamental group π 1 S and G cannot be the dihedral group D 4 of order 8.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-008-9317-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2009-04, Vol.139 (1), p.49-55
issn 0046-5755
1572-9168
language eng
recordid cdi_crossref_primary_10_1007_s10711_008_9317_2
source Springer Link
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Hyperbolic Geometry
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title Campedelli surfaces with fundamental group of order 8
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Campedelli%20surfaces%20with%20fundamental%20group%20of%20order%208&rft.jtitle=Geometriae%20dedicata&rft.au=Mendes%20Lopes,%20Margarida&rft.date=2009-04-01&rft.volume=139&rft.issue=1&rft.spage=49&rft.epage=55&rft.pages=49-55&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-008-9317-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s10711_008_9317_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-2234986b96a9e90bd1c45337a516e0cd1637ae099ea44d176981fda0648590153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true