Loading…

Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds

We study the global centre symmetry set ( GCS ) of a smooth closed submanifold . The GCS includes both the centre symmetry set defined by Janeczko (Geometria Dedicata 60:9–16, 1996 ) and the Wigner caustic defined by Berry (Philos Trans R Soc Lond A 287:237–271, 1977 ). The definition of GCS uses th...

Full description

Saved in:
Bibliographic Details
Published in:Geometriae dedicata 2014-04, Vol.169 (1), p.361-382
Main Authors: Domitrz, Wojciech, Rios, Pedro de M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-8e5db6dcc1883ab013fb659229f32dfb163b286421390fe42a97137efd3652703
cites cdi_FETCH-LOGICAL-c331t-8e5db6dcc1883ab013fb659229f32dfb163b286421390fe42a97137efd3652703
container_end_page 382
container_issue 1
container_start_page 361
container_title Geometriae dedicata
container_volume 169
creator Domitrz, Wojciech
Rios, Pedro de M.
description We study the global centre symmetry set ( GCS ) of a smooth closed submanifold . The GCS includes both the centre symmetry set defined by Janeczko (Geometria Dedicata 60:9–16, 1996 ) and the Wigner caustic defined by Berry (Philos Trans R Soc Lond A 287:237–271, 1977 ). The definition of GCS uses the concept of an affine -equidistant of . When is a Lagrangian submanifold in the affine symplectic space , we present generating families for singularities of and prove that the caustic of any simple stable Lagrangian singularity in a -dimensional Lagrangian fibre bundle is realizable as the germ of an affine equidistant of some . We characterize the criminant part of GCS in terms of bitangent hyperplanes to . Then, after presenting the appropriate equivalence relation to be used in this Lagrangian case, we classify the affine-Lagrangian stable singularities of GCS . In particular we show that, already for a smooth closed convex curve , many singularities of GCS which are affine stable are not affine-Lagrangian stable.
doi_str_mv 10.1007/s10711-013-9861-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10711_013_9861_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10711_013_9861_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-8e5db6dcc1883ab013fb659229f32dfb163b286421390fe42a97137efd3652703</originalsourceid><addsrcrecordid>eNp9kM1OxCAYRYnRxHH0AdzxAigfDNAuzcS_ZBIXauKOQIGGSUsV6GLe3uq4dnU399zcHISugd4Apeq2AFUAhAInbSOBsBO0AqEYaUE2p2hF6UYSoYQ4Rxel7CmlrVJshT5eY-rnweRYoy94Cth_zdHFUk2qBZvkcD9M1gy486lmj8thHH3NB1x8_e3vTJ9N6qNJuMx2NCmGaXDlEp0FMxR_9Zdr9P5w_7Z9IruXx-ft3Y50nEMljRfOStd10DTc2OV_sFK0jLWBMxcsSG5ZIzcMeEuD3zDTKuDKB8elYIryNYLjbpenUrIP-jPH0eSDBqp_1OijGr1M6x81mi0MOzJl6abeZ72f5pyWm_9A31k9Z_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds</title><source>Springer Nature</source><creator>Domitrz, Wojciech ; Rios, Pedro de M.</creator><creatorcontrib>Domitrz, Wojciech ; Rios, Pedro de M.</creatorcontrib><description>We study the global centre symmetry set ( GCS ) of a smooth closed submanifold . The GCS includes both the centre symmetry set defined by Janeczko (Geometria Dedicata 60:9–16, 1996 ) and the Wigner caustic defined by Berry (Philos Trans R Soc Lond A 287:237–271, 1977 ). The definition of GCS uses the concept of an affine -equidistant of . When is a Lagrangian submanifold in the affine symplectic space , we present generating families for singularities of and prove that the caustic of any simple stable Lagrangian singularity in a -dimensional Lagrangian fibre bundle is realizable as the germ of an affine equidistant of some . We characterize the criminant part of GCS in terms of bitangent hyperplanes to . Then, after presenting the appropriate equivalence relation to be used in this Lagrangian case, we classify the affine-Lagrangian stable singularities of GCS . In particular we show that, already for a smooth closed convex curve , many singularities of GCS which are affine stable are not affine-Lagrangian stable.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-013-9861-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2014-04, Vol.169 (1), p.361-382</ispartof><rights>The Author(s) 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-8e5db6dcc1883ab013fb659229f32dfb163b286421390fe42a97137efd3652703</citedby><cites>FETCH-LOGICAL-c331t-8e5db6dcc1883ab013fb659229f32dfb163b286421390fe42a97137efd3652703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Domitrz, Wojciech</creatorcontrib><creatorcontrib>Rios, Pedro de M.</creatorcontrib><title>Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We study the global centre symmetry set ( GCS ) of a smooth closed submanifold . The GCS includes both the centre symmetry set defined by Janeczko (Geometria Dedicata 60:9–16, 1996 ) and the Wigner caustic defined by Berry (Philos Trans R Soc Lond A 287:237–271, 1977 ). The definition of GCS uses the concept of an affine -equidistant of . When is a Lagrangian submanifold in the affine symplectic space , we present generating families for singularities of and prove that the caustic of any simple stable Lagrangian singularity in a -dimensional Lagrangian fibre bundle is realizable as the germ of an affine equidistant of some . We characterize the criminant part of GCS in terms of bitangent hyperplanes to . Then, after presenting the appropriate equivalence relation to be used in this Lagrangian case, we classify the affine-Lagrangian stable singularities of GCS . In particular we show that, already for a smooth closed convex curve , many singularities of GCS which are affine stable are not affine-Lagrangian stable.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAYRYnRxHH0AdzxAigfDNAuzcS_ZBIXauKOQIGGSUsV6GLe3uq4dnU399zcHISugd4Apeq2AFUAhAInbSOBsBO0AqEYaUE2p2hF6UYSoYQ4Rxel7CmlrVJshT5eY-rnweRYoy94Cth_zdHFUk2qBZvkcD9M1gy486lmj8thHH3NB1x8_e3vTJ9N6qNJuMx2NCmGaXDlEp0FMxR_9Zdr9P5w_7Z9IruXx-ft3Y50nEMljRfOStd10DTc2OV_sFK0jLWBMxcsSG5ZIzcMeEuD3zDTKuDKB8elYIryNYLjbpenUrIP-jPH0eSDBqp_1OijGr1M6x81mi0MOzJl6abeZ72f5pyWm_9A31k9Z_A</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Domitrz, Wojciech</creator><creator>Rios, Pedro de M.</creator><general>Springer Netherlands</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140401</creationdate><title>Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds</title><author>Domitrz, Wojciech ; Rios, Pedro de M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-8e5db6dcc1883ab013fb659229f32dfb163b286421390fe42a97137efd3652703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domitrz, Wojciech</creatorcontrib><creatorcontrib>Rios, Pedro de M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domitrz, Wojciech</au><au>Rios, Pedro de M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>169</volume><issue>1</issue><spage>361</spage><epage>382</epage><pages>361-382</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We study the global centre symmetry set ( GCS ) of a smooth closed submanifold . The GCS includes both the centre symmetry set defined by Janeczko (Geometria Dedicata 60:9–16, 1996 ) and the Wigner caustic defined by Berry (Philos Trans R Soc Lond A 287:237–271, 1977 ). The definition of GCS uses the concept of an affine -equidistant of . When is a Lagrangian submanifold in the affine symplectic space , we present generating families for singularities of and prove that the caustic of any simple stable Lagrangian singularity in a -dimensional Lagrangian fibre bundle is realizable as the germ of an affine equidistant of some . We characterize the criminant part of GCS in terms of bitangent hyperplanes to . Then, after presenting the appropriate equivalence relation to be used in this Lagrangian case, we classify the affine-Lagrangian stable singularities of GCS . In particular we show that, already for a smooth closed convex curve , many singularities of GCS which are affine stable are not affine-Lagrangian stable.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-013-9861-2</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2014-04, Vol.169 (1), p.361-382
issn 0046-5755
1572-9168
language eng
recordid cdi_crossref_primary_10_1007_s10711_013_9861_2
source Springer Nature
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Hyperbolic Geometry
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularities%20of%20equidistants%20and%20global%20centre%20symmetry%20sets%20of%20Lagrangian%20submanifolds&rft.jtitle=Geometriae%20dedicata&rft.au=Domitrz,%20Wojciech&rft.date=2014-04-01&rft.volume=169&rft.issue=1&rft.spage=361&rft.epage=382&rft.pages=361-382&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-013-9861-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s10711_013_9861_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-8e5db6dcc1883ab013fb659229f32dfb163b286421390fe42a97137efd3652703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true