Loading…

Progress Toward Development of Low-Temperature Microwave Refractive Index Gas Thermometry at NRC

Progress toward the development of a low-temperature microwave refractive index gas thermometry implementation for primary thermometry at NRC is reported. A prototype quasi-spherical copper resonator has been integrated into a cryogenic system with a 5 K base temperature, and preliminary microwave m...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermophysics 2015-03, Vol.36 (2-3), p.205-228
Main Authors: Rourke, P. M. C., Hill, K. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Progress toward the development of a low-temperature microwave refractive index gas thermometry implementation for primary thermometry at NRC is reported. A prototype quasi-spherical copper resonator has been integrated into a cryogenic system with a 5 K base temperature, and preliminary microwave measurements in vacuum have been completed to characterize the resonator between 5 K and 297 K. The dependence of experimental results on spectral fitting background terms, 1st- and 2nd-order shape corrections, and waveguide corrections has also been explored. The current NRC results agree with previous room-temperature measurements on the same resonator at NIST, and indicate no significant change in resonator shape between room temperature and low temperature. The temperature dependences of the resonator electrical conductivity and linear thermal expansion coefficient, as obtained from the microwave resonances, agree with published literature values for oxygen-free high-conductivity copper measured using other techniques.
ISSN:0195-928X
1572-9567
DOI:10.1007/s10765-014-1728-8