Loading…
Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility
We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in...
Saved in:
Published in: | International journal of theoretical physics 2012-11, Vol.51 (11), p.3536-3550 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3 |
container_end_page | 3550 |
container_issue | 11 |
container_start_page | 3536 |
container_title | International journal of theoretical physics |
container_volume | 51 |
creator | Garmon, Savannah Rotter, Ingrid Hatano, Naomichi Segal, Dvira |
description | We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension
n
D
is given by
n
D
(
n
D
−1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically
, in which
n
C
is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion. |
doi_str_mv | 10.1007/s10773-012-1240-5 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10773_012_1240_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10773_012_1240_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3</originalsourceid><addsrcrecordid>eNp9kNFOwjAUhhujiYg-gHd9geppt67dJSGoJCRAxOumKx2UQDfbTd3bs4nXXp2L_3x_8n8IPVJ4ogDiOVIQIiFAGaEsBcKv0IhywUjOBb9GIwAGRIhU3qK7GA8AkEMqR-h74vWxiy7ijTV77z5bi8sq4NmPsXXjqj7Fq8r5JmLn8bK2Hq9b7Zv2hN-72NhTxNpv8Xq1wUNTtet-8WZv8aSurQ7aG4urEs9DsF82RFe4o2u6e3RT6mO0D393jD5eZpvpG1ksX-fTyYIYJmVDRCZ5Uaas5DJjMs9kQSHLNM0LSIp-mgC9NTJPMsbNsE5nRcIMFLkujeVbnYwRvfSaUMUYbKnq4E46dIqCGsypiznVm1ODOcV7hl2Y2P_6nQ3qULWhXxf_gc57NHI-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility</title><source>Springer Nature</source><creator>Garmon, Savannah ; Rotter, Ingrid ; Hatano, Naomichi ; Segal, Dvira</creator><creatorcontrib>Garmon, Savannah ; Rotter, Ingrid ; Hatano, Naomichi ; Segal, Dvira</creatorcontrib><description>We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension
n
D
is given by
n
D
(
n
D
−1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically
, in which
n
C
is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-012-1240-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Elementary Particles ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2012-11, Vol.51 (11), p.3536-3550</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3</citedby><cites>FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garmon, Savannah</creatorcontrib><creatorcontrib>Rotter, Ingrid</creatorcontrib><creatorcontrib>Hatano, Naomichi</creatorcontrib><creatorcontrib>Segal, Dvira</creatorcontrib><title>Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension
n
D
is given by
n
D
(
n
D
−1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically
, in which
n
C
is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.</description><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kNFOwjAUhhujiYg-gHd9geppt67dJSGoJCRAxOumKx2UQDfbTd3bs4nXXp2L_3x_8n8IPVJ4ogDiOVIQIiFAGaEsBcKv0IhywUjOBb9GIwAGRIhU3qK7GA8AkEMqR-h74vWxiy7ijTV77z5bi8sq4NmPsXXjqj7Fq8r5JmLn8bK2Hq9b7Zv2hN-72NhTxNpv8Xq1wUNTtet-8WZv8aSurQ7aG4urEs9DsF82RFe4o2u6e3RT6mO0D393jD5eZpvpG1ksX-fTyYIYJmVDRCZ5Uaas5DJjMs9kQSHLNM0LSIp-mgC9NTJPMsbNsE5nRcIMFLkujeVbnYwRvfSaUMUYbKnq4E46dIqCGsypiznVm1ODOcV7hl2Y2P_6nQ3qULWhXxf_gc57NHI-</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Garmon, Savannah</creator><creator>Rotter, Ingrid</creator><creator>Hatano, Naomichi</creator><creator>Segal, Dvira</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility</title><author>Garmon, Savannah ; Rotter, Ingrid ; Hatano, Naomichi ; Segal, Dvira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garmon, Savannah</creatorcontrib><creatorcontrib>Rotter, Ingrid</creatorcontrib><creatorcontrib>Hatano, Naomichi</creatorcontrib><creatorcontrib>Segal, Dvira</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garmon, Savannah</au><au>Rotter, Ingrid</au><au>Hatano, Naomichi</au><au>Segal, Dvira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>51</volume><issue>11</issue><spage>3536</spage><epage>3550</epage><pages>3536-3550</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension
n
D
is given by
n
D
(
n
D
−1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically
, in which
n
C
is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10773-012-1240-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | International journal of theoretical physics, 2012-11, Vol.51 (11), p.3536-3550 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10773_012_1240_5 |
source | Springer Nature |
subjects | Elementary Particles Mathematical and Computational Physics Physics Physics and Astronomy Quantum Field Theory Quantum Physics Theoretical |
title | Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20Technique%20for%20Exceptional%20Points%20in%20Open%20Quantum%20Systems%20and%20QPT%20Analogy%20for%20the%20Appearance%20of%20Irreversibility&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Garmon,%20Savannah&rft.date=2012-11-01&rft.volume=51&rft.issue=11&rft.spage=3536&rft.epage=3550&rft.pages=3536-3550&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-012-1240-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s10773_012_1240_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |