Loading…

Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility

We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in...

Full description

Saved in:
Bibliographic Details
Published in:International journal of theoretical physics 2012-11, Vol.51 (11), p.3536-3550
Main Authors: Garmon, Savannah, Rotter, Ingrid, Hatano, Naomichi, Segal, Dvira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3
cites cdi_FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3
container_end_page 3550
container_issue 11
container_start_page 3536
container_title International journal of theoretical physics
container_volume 51
creator Garmon, Savannah
Rotter, Ingrid
Hatano, Naomichi
Segal, Dvira
description We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension n D is given by n D ( n D −1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically , in which n C is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.
doi_str_mv 10.1007/s10773-012-1240-5
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10773_012_1240_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10773_012_1240_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3</originalsourceid><addsrcrecordid>eNp9kNFOwjAUhhujiYg-gHd9geppt67dJSGoJCRAxOumKx2UQDfbTd3bs4nXXp2L_3x_8n8IPVJ4ogDiOVIQIiFAGaEsBcKv0IhywUjOBb9GIwAGRIhU3qK7GA8AkEMqR-h74vWxiy7ijTV77z5bi8sq4NmPsXXjqj7Fq8r5JmLn8bK2Hq9b7Zv2hN-72NhTxNpv8Xq1wUNTtet-8WZv8aSurQ7aG4urEs9DsF82RFe4o2u6e3RT6mO0D393jD5eZpvpG1ksX-fTyYIYJmVDRCZ5Uaas5DJjMs9kQSHLNM0LSIp-mgC9NTJPMsbNsE5nRcIMFLkujeVbnYwRvfSaUMUYbKnq4E46dIqCGsypiznVm1ODOcV7hl2Y2P_6nQ3qULWhXxf_gc57NHI-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility</title><source>Springer Nature</source><creator>Garmon, Savannah ; Rotter, Ingrid ; Hatano, Naomichi ; Segal, Dvira</creator><creatorcontrib>Garmon, Savannah ; Rotter, Ingrid ; Hatano, Naomichi ; Segal, Dvira</creatorcontrib><description>We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension n D is given by n D ( n D −1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically , in which n C is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-012-1240-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Elementary Particles ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2012-11, Vol.51 (11), p.3536-3550</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3</citedby><cites>FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garmon, Savannah</creatorcontrib><creatorcontrib>Rotter, Ingrid</creatorcontrib><creatorcontrib>Hatano, Naomichi</creatorcontrib><creatorcontrib>Segal, Dvira</creatorcontrib><title>Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension n D is given by n D ( n D −1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically , in which n C is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.</description><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kNFOwjAUhhujiYg-gHd9geppt67dJSGoJCRAxOumKx2UQDfbTd3bs4nXXp2L_3x_8n8IPVJ4ogDiOVIQIiFAGaEsBcKv0IhywUjOBb9GIwAGRIhU3qK7GA8AkEMqR-h74vWxiy7ijTV77z5bi8sq4NmPsXXjqj7Fq8r5JmLn8bK2Hq9b7Zv2hN-72NhTxNpv8Xq1wUNTtet-8WZv8aSurQ7aG4urEs9DsF82RFe4o2u6e3RT6mO0D393jD5eZpvpG1ksX-fTyYIYJmVDRCZ5Uaas5DJjMs9kQSHLNM0LSIp-mgC9NTJPMsbNsE5nRcIMFLkujeVbnYwRvfSaUMUYbKnq4E46dIqCGsypiznVm1ODOcV7hl2Y2P_6nQ3qULWhXxf_gc57NHI-</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Garmon, Savannah</creator><creator>Rotter, Ingrid</creator><creator>Hatano, Naomichi</creator><creator>Segal, Dvira</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility</title><author>Garmon, Savannah ; Rotter, Ingrid ; Hatano, Naomichi ; Segal, Dvira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garmon, Savannah</creatorcontrib><creatorcontrib>Rotter, Ingrid</creatorcontrib><creatorcontrib>Hatano, Naomichi</creatorcontrib><creatorcontrib>Segal, Dvira</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garmon, Savannah</au><au>Rotter, Ingrid</au><au>Hatano, Naomichi</au><au>Segal, Dvira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>51</volume><issue>11</issue><spage>3536</spage><epage>3550</epage><pages>3536-3550</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension n D is given by n D ( n D −1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically , in which n C is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10773-012-1240-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2012-11, Vol.51 (11), p.3536-3550
issn 0020-7748
1572-9575
language eng
recordid cdi_crossref_primary_10_1007_s10773_012_1240_5
source Springer Nature
subjects Elementary Particles
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Theoretical
title Analysis Technique for Exceptional Points in Open Quantum Systems and QPT Analogy for the Appearance of Irreversibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20Technique%20for%20Exceptional%20Points%20in%20Open%20Quantum%20Systems%20and%20QPT%20Analogy%20for%20the%20Appearance%20of%20Irreversibility&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Garmon,%20Savannah&rft.date=2012-11-01&rft.volume=51&rft.issue=11&rft.spage=3536&rft.epage=3550&rft.pages=3536-3550&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-012-1240-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s10773_012_1240_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-7685bf42f58628968b1066a19b03b95770adc893625c7748a6b32c0b9afce5da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true