Loading…

The Quantum Entanglement in the Back Ground of Gauss-Bonnet Gravity for a Generically Entangled State

In this work the Hawking-Unruh effect on the quantum entanglement of bosonic field in background of a spherically symmetric black hole of Gauss-Bonnet gravity is investigated beyond the single mode approximation. The entanglement decreases due to Hawking-Unruh effect. However, it has been shown that...

Full description

Saved in:
Bibliographic Details
Published in:International journal of theoretical physics 2014-07, Vol.53 (7), p.2141-2154
Main Authors: Soltani, Morteza, Sayyahi, Saba
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work the Hawking-Unruh effect on the quantum entanglement of bosonic field in background of a spherically symmetric black hole of Gauss-Bonnet gravity is investigated beyond the single mode approximation. The entanglement decreases due to Hawking-Unruh effect. However, it has been shown that the dimensions of space time, Gauss-Bonnet term and the parameter β of initial entangled state would be influenced on this degradation. In our investigation, we consider the accelerated observer either near or far from the event horizon and inspect entanglement degradation for them. The mutual information of this bosonic system is also calculated in beyond the single mode approximation and we show that the mutual information will have different behavior when the Hawking temperature increases.
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-013-1848-0