Loading…
Investigation of Ni-based alloy/CGO electro-catalysts as protective layer for a solid oxide fuel cell anode fed with ethanol
Ni-based alloys were prepared by using the oxalate method and subsequent in-situ reduction. The crystallographic phase and microstructure of the catalysts were investigated. These bimetallic alloys were mixed with gadolinium-doped ceria in order to obtain a composite material with mixed electronic-i...
Saved in:
Published in: | Journal of applied electrochemistry 2015-07, Vol.45 (7), p.647-656 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ni-based alloys were prepared by using the oxalate method and subsequent in-situ reduction. The crystallographic phase and microstructure of the catalysts were investigated. These bimetallic alloys were mixed with gadolinium-doped ceria in order to obtain a composite material with mixed electronic-ionic conductivity. Catalytic and electrocatalytic properties of the composite materials for the conversion of ethanol were investigated. Electrochemical tests were carried out by utilizing the Ni-based alloy/CGO cermet as a barrier layer in a conventional anode-supported solid oxide fuel cell (SOFC). A comparative study between the modified cells and a conventional anode-supported SOFC without the protective layer was made. The aim was to efficiently convert the fuel directly into electricity or syngas (H
2
and CO) just before the conventional anode support. In accordance with the ex-situ catalytic tests, the SOFC anode modified with Ni–Co/CGO showed superior performance towards the direct utilization of dry ethanol than the bare anode and that modified with Ni–Cu/CGO. A peak power of 550 mW cm
−2
was achieved with the dry ethanol-fed Ni–Co/CGO pre-layer modified-cell at 800 °C. A total low frequency resistance of |
---|---|
ISSN: | 0021-891X 1572-8838 |
DOI: | 10.1007/s10800-015-0849-5 |