Loading…

Lyashko–Looijenga morphisms and submaximal factorizations of a Coxeter element

When W is a finite reflection group, the noncrossing partition lattice of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n -gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in as a gen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebraic combinatorics 2012-12, Vol.36 (4), p.649-673
Main Author: Ripoll, Vivien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c283t-5147e4e25e1b8d02746428e426e171cb8db59d7c158cba39551932549e337b703
container_end_page 673
container_issue 4
container_start_page 649
container_title Journal of algebraic combinatorics
container_volume 36
creator Ripoll, Vivien
description When W is a finite reflection group, the noncrossing partition lattice of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n -gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in as a generalized Fuß–Catalan number, depending on the invariant degrees of W . We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of as fibers of a Lyashko–Looijenga covering ( ), constructed from the geometry of the discriminant hypersurface of W . We study algebraically the map , describing the factorizations of its discriminant and its Jacobian. As byproducts, we generalize a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorizations of a Coxeter element of W .
doi_str_mv 10.1007/s10801-012-0354-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10801_012_0354_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10801_012_0354_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-5147e4e25e1b8d02746428e426e171cb8db59d7c158cba39551932549e337b703</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vEM3NT5MspfgHA7rQdchM77RTO5OSTKF15Tv4hj6JU8a1qwOX810OHyHXwG-Ac3ObgVsOjINgXGrF1AmZgDaCOXDilEy4E5o569w5uch5zTl3FvSEvBaHkFcf8efru4ixWWO3DLSNabtqcptp6BY078o27Js2bGgdqj6m5jP0TewyjTUNdB732GOiuMEWu_6SnNVhk_HqL6fk_eH-bf7EipfH5_ldwSphZc80KIMKhUYo7YILo2ZKWFRihmCgGm6ldgtTgbZVGaTTGpwUWjmU0pSGyymB8W-VYs4Ja79Nw8Z08MD9UYkflfhBiT8q8WpgxMjkodstMfl13KVumPkP9AsLzWUb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lyashko–Looijenga morphisms and submaximal factorizations of a Coxeter element</title><source>Springer Nature</source><creator>Ripoll, Vivien</creator><creatorcontrib>Ripoll, Vivien</creatorcontrib><description>When W is a finite reflection group, the noncrossing partition lattice of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n -gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in as a generalized Fuß–Catalan number, depending on the invariant degrees of W . We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of as fibers of a Lyashko–Looijenga covering ( ), constructed from the geometry of the discriminant hypersurface of W . We study algebraically the map , describing the factorizations of its discriminant and its Jacobian. As byproducts, we generalize a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorizations of a Coxeter element of W .</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-012-0354-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures</subject><ispartof>Journal of algebraic combinatorics, 2012-12, Vol.36 (4), p.649-673</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-5147e4e25e1b8d02746428e426e171cb8db59d7c158cba39551932549e337b703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ripoll, Vivien</creatorcontrib><title>Lyashko–Looijenga morphisms and submaximal factorizations of a Coxeter element</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>When W is a finite reflection group, the noncrossing partition lattice of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n -gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in as a generalized Fuß–Catalan number, depending on the invariant degrees of W . We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of as fibers of a Lyashko–Looijenga covering ( ), constructed from the geometry of the discriminant hypersurface of W . We study algebraically the map , describing the factorizations of its discriminant and its Jacobian. As byproducts, we generalize a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorizations of a Coxeter element of W .</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vEM3NT5MspfgHA7rQdchM77RTO5OSTKF15Tv4hj6JU8a1qwOX810OHyHXwG-Ac3ObgVsOjINgXGrF1AmZgDaCOXDilEy4E5o569w5uch5zTl3FvSEvBaHkFcf8efru4ixWWO3DLSNabtqcptp6BY078o27Js2bGgdqj6m5jP0TewyjTUNdB732GOiuMEWu_6SnNVhk_HqL6fk_eH-bf7EipfH5_ldwSphZc80KIMKhUYo7YILo2ZKWFRihmCgGm6ldgtTgbZVGaTTGpwUWjmU0pSGyymB8W-VYs4Ja79Nw8Z08MD9UYkflfhBiT8q8WpgxMjkodstMfl13KVumPkP9AsLzWUb</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Ripoll, Vivien</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>Lyashko–Looijenga morphisms and submaximal factorizations of a Coxeter element</title><author>Ripoll, Vivien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-5147e4e25e1b8d02746428e426e171cb8db59d7c158cba39551932549e337b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ripoll, Vivien</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ripoll, Vivien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyashko–Looijenga morphisms and submaximal factorizations of a Coxeter element</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>36</volume><issue>4</issue><spage>649</spage><epage>673</epage><pages>649-673</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>When W is a finite reflection group, the noncrossing partition lattice of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n -gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in as a generalized Fuß–Catalan number, depending on the invariant degrees of W . We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of as fibers of a Lyashko–Looijenga covering ( ), constructed from the geometry of the discriminant hypersurface of W . We study algebraically the map , describing the factorizations of its discriminant and its Jacobian. As byproducts, we generalize a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorizations of a Coxeter element of W .</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10801-012-0354-4</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2012-12, Vol.36 (4), p.649-673
issn 0925-9899
1572-9192
language eng
recordid cdi_crossref_primary_10_1007_s10801_012_0354_4
source Springer Nature
subjects Combinatorics
Computer Science
Convex and Discrete Geometry
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
title Lyashko–Looijenga morphisms and submaximal factorizations of a Coxeter element
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyashko%E2%80%93Looijenga%20morphisms%20and%20submaximal%20factorizations%20of%20a%20Coxeter%20element&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Ripoll,%20Vivien&rft.date=2012-12-01&rft.volume=36&rft.issue=4&rft.spage=649&rft.epage=673&rft.pages=649-673&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-012-0354-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s10801_012_0354_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c283t-5147e4e25e1b8d02746428e426e171cb8db59d7c158cba39551932549e337b703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true