Loading…

Clustering of non-metric proximity data based on bi-links with ϵ-indiscernibility

In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and ϵ -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected wi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent information systems 2013-08, Vol.41 (1), p.61-71
Main Authors: Hirano, Shoji, Tsumoto, Shusaku
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1333-babb4fa1b51617e7022a06308f0a84b5b81e9a3487374f0d5a6c48f99dfd7e983
cites cdi_FETCH-LOGICAL-c1333-babb4fa1b51617e7022a06308f0a84b5b81e9a3487374f0d5a6c48f99dfd7e983
container_end_page 71
container_issue 1
container_start_page 61
container_title Journal of intelligent information systems
container_volume 41
creator Hirano, Shoji
Tsumoto, Shusaku
description In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and ϵ -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected with bi-directional links (bi-links). The concept of ϵ -indiscernibility is incorporated into the process of establishing bi-links. This scheme enables users to control the level of asymmetry that can be ignored in merging a pair of objects. Experimental results on the soft drink brand switching data showed that this approach is capable of producing better clusters compared to the straightforward use of bi-links.
doi_str_mv 10.1007/s10844-012-0218-3
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10844_012_0218_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10844_012_0218_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1333-babb4fa1b51617e7022a06308f0a84b5b81e9a3487374f0d5a6c48f99dfd7e983</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAGbegOH5k9geooifVAkJwdiyExtcEqeyU0EXxjrYEqnKmNGb3HN130HoksIVBZDXhYISggBlBBhVhB-hBa0kJ7KW1TFagGYV0RrYKTorZQ0AWtWwQM9Nvy2TzzG94THgNCYy-CnHFm_y-BWHOO1wZyeLnS2-w2PCLpI-po-CP-P0jn--SUxdLK3PKbrYz_lzdBJsX_zF312i17vbl-aBrJ7uH5ubFWkp55w465wIlrqK1lR6CYxZqDmoAFYJVzlFvbZcKMmlCNBVtm6FClp3oZNeK75E9NDb5rGU7IPZ5DjYvDMUzF6KOUgxsxSzl2L4zLADUzb7l30263Gb0zzzH-gXh7ZmFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clustering of non-metric proximity data based on bi-links with ϵ-indiscernibility</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Hirano, Shoji ; Tsumoto, Shusaku</creator><creatorcontrib>Hirano, Shoji ; Tsumoto, Shusaku</creatorcontrib><description>In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and ϵ -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected with bi-directional links (bi-links). The concept of ϵ -indiscernibility is incorporated into the process of establishing bi-links. This scheme enables users to control the level of asymmetry that can be ignored in merging a pair of objects. Experimental results on the soft drink brand switching data showed that this approach is capable of producing better clusters compared to the straightforward use of bi-links.</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1007/s10844-012-0218-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Data Structures and Information Theory ; Information Storage and Retrieval ; IT in Business ; Natural Language Processing (NLP)</subject><ispartof>Journal of intelligent information systems, 2013-08, Vol.41 (1), p.61-71</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1333-babb4fa1b51617e7022a06308f0a84b5b81e9a3487374f0d5a6c48f99dfd7e983</citedby><cites>FETCH-LOGICAL-c1333-babb4fa1b51617e7022a06308f0a84b5b81e9a3487374f0d5a6c48f99dfd7e983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hirano, Shoji</creatorcontrib><creatorcontrib>Tsumoto, Shusaku</creatorcontrib><title>Clustering of non-metric proximity data based on bi-links with ϵ-indiscernibility</title><title>Journal of intelligent information systems</title><addtitle>J Intell Inf Syst</addtitle><description>In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and ϵ -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected with bi-directional links (bi-links). The concept of ϵ -indiscernibility is incorporated into the process of establishing bi-links. This scheme enables users to control the level of asymmetry that can be ignored in merging a pair of objects. Experimental results on the soft drink brand switching data showed that this approach is capable of producing better clusters compared to the straightforward use of bi-links.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Information Storage and Retrieval</subject><subject>IT in Business</subject><subject>Natural Language Processing (NLP)</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAGbegOH5k9geooifVAkJwdiyExtcEqeyU0EXxjrYEqnKmNGb3HN130HoksIVBZDXhYISggBlBBhVhB-hBa0kJ7KW1TFagGYV0RrYKTorZQ0AWtWwQM9Nvy2TzzG94THgNCYy-CnHFm_y-BWHOO1wZyeLnS2-w2PCLpI-po-CP-P0jn--SUxdLK3PKbrYz_lzdBJsX_zF312i17vbl-aBrJ7uH5ubFWkp55w465wIlrqK1lR6CYxZqDmoAFYJVzlFvbZcKMmlCNBVtm6FClp3oZNeK75E9NDb5rGU7IPZ5DjYvDMUzF6KOUgxsxSzl2L4zLADUzb7l30263Gb0zzzH-gXh7ZmFA</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Hirano, Shoji</creator><creator>Tsumoto, Shusaku</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201308</creationdate><title>Clustering of non-metric proximity data based on bi-links with ϵ-indiscernibility</title><author>Hirano, Shoji ; Tsumoto, Shusaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1333-babb4fa1b51617e7022a06308f0a84b5b81e9a3487374f0d5a6c48f99dfd7e983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Information Storage and Retrieval</topic><topic>IT in Business</topic><topic>Natural Language Processing (NLP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirano, Shoji</creatorcontrib><creatorcontrib>Tsumoto, Shusaku</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirano, Shoji</au><au>Tsumoto, Shusaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of non-metric proximity data based on bi-links with ϵ-indiscernibility</atitle><jtitle>Journal of intelligent information systems</jtitle><stitle>J Intell Inf Syst</stitle><date>2013-08</date><risdate>2013</risdate><volume>41</volume><issue>1</issue><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and ϵ -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected with bi-directional links (bi-links). The concept of ϵ -indiscernibility is incorporated into the process of establishing bi-links. This scheme enables users to control the level of asymmetry that can be ignored in merging a pair of objects. Experimental results on the soft drink brand switching data showed that this approach is capable of producing better clusters compared to the straightforward use of bi-links.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10844-012-0218-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9902
ispartof Journal of intelligent information systems, 2013-08, Vol.41 (1), p.61-71
issn 0925-9902
1573-7675
language eng
recordid cdi_crossref_primary_10_1007_s10844_012_0218_3
source ABI/INFORM Global (ProQuest); Springer Nature
subjects Artificial Intelligence
Computer Science
Data Structures and Information Theory
Information Storage and Retrieval
IT in Business
Natural Language Processing (NLP)
title Clustering of non-metric proximity data based on bi-links with ϵ-indiscernibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20non-metric%20proximity%20data%20based%20on%20bi-links%20with%20%CF%B5-indiscernibility&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Hirano,%20Shoji&rft.date=2013-08&rft.volume=41&rft.issue=1&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1007/s10844-012-0218-3&rft_dat=%3Ccrossref_sprin%3E10_1007_s10844_012_0218_3%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1333-babb4fa1b51617e7022a06308f0a84b5b81e9a3487374f0d5a6c48f99dfd7e983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true