Loading…
High-Precision Visual-Tracking using the IMM Algorithm and Discrete GPI Observers (IMM-DGPIO): Categories (4)(7)
In this work, we propose the integration of a bank of Discrete Generalized Proportional Integral Observers (DGPIO) within an Interacting Multiple Model (IMM) structure in order to improve the precision of visual-tracking tasks. Applications such as visual servoing, robotic assisted surgery and optro...
Saved in:
Published in: | Journal of intelligent & robotic systems 2020-09, Vol.99 (3-4), p.815-835 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we propose the integration of a bank of Discrete Generalized Proportional Integral Observers (DGPIO) within an Interacting Multiple Model (IMM) structure in order to improve the precision of visual-tracking tasks. Applications such as visual servoing, robotic assisted surgery and optronic weapon systems require accurate and high-precision measurements provided by real-time visual-tracking systems. In this case, the DGPIO-Bank was designed using two kinematic models based in constant velocity (CV) and constant acceleration (CA) motion profiles. The main feature of the DGPIO-Bank is the active disturbance rejection (ADR) feature which reduces noise in the position signal of a moving object. The resultant algorithm uses a fusion of four important features: state interaction, Kalman filtering, active disturbance rejection and multiple models combination. For performance comparison, we evaluated our proposed IMM-DGPIO algorithm and other state of the art IMM algorithms. Experimental results show that our proposed strategy had the best performance. |
---|---|
ISSN: | 0921-0296 1573-0409 |
DOI: | 10.1007/s10846-020-01164-6 |