Loading…
Multicriteria Robust Fitting of Elliptical Primitives
Geometric fitting is present in different fields of science, engineering and astronomy. In particular, ellipse shapes are some of the most commonly employed geometric features in digital image analysis and visual pattern recognition. Most geometric and algebraic methods are sensitive to noise and ou...
Saved in:
Published in: | Journal of mathematical imaging and vision 2014, Vol.49 (2), p.492-509 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-68d4267ba8c89695032615e32a8720c74eda134f7c3fe520383a8463ba1423d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-68d4267ba8c89695032615e32a8720c74eda134f7c3fe520383a8463ba1423d3 |
container_end_page | 509 |
container_issue | 2 |
container_start_page | 492 |
container_title | Journal of mathematical imaging and vision |
container_volume | 49 |
creator | Muñoz-Pérez, J. de Cózar-Macías, O. D. Blázquez-Parra, E. B. Ladrón de Guevara-López, I. |
description | Geometric fitting is present in different fields of science, engineering and astronomy. In particular, ellipse shapes are some of the most commonly employed geometric features in digital image analysis and visual pattern recognition. Most geometric and algebraic methods are sensitive to noise and outlier points and so the results are not usually acceptable. In this paper, a robust geometric multicriteria method based on the mean absolute geometric error and the eccentricity to fit an ellipse to set of points is proposed. It is well known that the least mean absolute error criterion leads to robust estimations.
The experimental results on different real and synthetic data have shown that the proposed algorithm is robust to outliers. Moreover, it allows us to identify outliers and remove them. |
doi_str_mv | 10.1007/s10851-013-0480-1 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10851_013_0480_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28422876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-68d4267ba8c89695032615e32a8720c74eda134f7c3fe520383a8463ba1423d3</originalsourceid><addsrcrecordid>eNp9j8FKAzEURYMoWKsf4G42LqPvJZkks5TSqlBRpPuQSTMlZZwpSSr496aMuHT1Fu-eyz2E3CLcI4B6SAi6RgrIKQgNFM_IDGvFqZKan5MZNEzQpgF1Sa5S2gOAZqhmpH499jm4GLKPwVYfY3tMuVqFnMOwq8auWvZ9OJSE7av3GD5DDl8-XZOLzvbJ3_zeOdmslpvFM12_Pb0sHtfUcdSZSr0VTKrWaqcb2dTAmcTac2a1YuCU8FuLXHTK8c7XDLjmVgvJW4uC8S2fE5xqXRxTir4zhzLBxm-DYE7aZtI2RductA0W5m5iDjaV0V20gwvpD2RaMKaVLDk25VJ5DTsfzX48xqHY_FP-Az42ZjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multicriteria Robust Fitting of Elliptical Primitives</title><source>Springer Nature</source><creator>Muñoz-Pérez, J. ; de Cózar-Macías, O. D. ; Blázquez-Parra, E. B. ; Ladrón de Guevara-López, I.</creator><creatorcontrib>Muñoz-Pérez, J. ; de Cózar-Macías, O. D. ; Blázquez-Parra, E. B. ; Ladrón de Guevara-López, I.</creatorcontrib><description>Geometric fitting is present in different fields of science, engineering and astronomy. In particular, ellipse shapes are some of the most commonly employed geometric features in digital image analysis and visual pattern recognition. Most geometric and algebraic methods are sensitive to noise and outlier points and so the results are not usually acceptable. In this paper, a robust geometric multicriteria method based on the mean absolute geometric error and the eccentricity to fit an ellipse to set of points is proposed. It is well known that the least mean absolute error criterion leads to robust estimations.
The experimental results on different real and synthetic data have shown that the proposed algorithm is robust to outliers. Moreover, it allows us to identify outliers and remove them.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-013-0480-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applications of Mathematics ; Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Image Processing and Computer Vision ; Mathematical Methods in Physics ; Pattern recognition. Digital image processing. Computational geometry ; Signal,Image and Speech Processing ; Theoretical computing</subject><ispartof>Journal of mathematical imaging and vision, 2014, Vol.49 (2), p.492-509</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-68d4267ba8c89695032615e32a8720c74eda134f7c3fe520383a8463ba1423d3</citedby><cites>FETCH-LOGICAL-c318t-68d4267ba8c89695032615e32a8720c74eda134f7c3fe520383a8463ba1423d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28422876$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz-Pérez, J.</creatorcontrib><creatorcontrib>de Cózar-Macías, O. D.</creatorcontrib><creatorcontrib>Blázquez-Parra, E. B.</creatorcontrib><creatorcontrib>Ladrón de Guevara-López, I.</creatorcontrib><title>Multicriteria Robust Fitting of Elliptical Primitives</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Geometric fitting is present in different fields of science, engineering and astronomy. In particular, ellipse shapes are some of the most commonly employed geometric features in digital image analysis and visual pattern recognition. Most geometric and algebraic methods are sensitive to noise and outlier points and so the results are not usually acceptable. In this paper, a robust geometric multicriteria method based on the mean absolute geometric error and the eccentricity to fit an ellipse to set of points is proposed. It is well known that the least mean absolute error criterion leads to robust estimations.
The experimental results on different real and synthetic data have shown that the proposed algorithm is robust to outliers. Moreover, it allows us to identify outliers and remove them.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applications of Mathematics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical Methods in Physics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Signal,Image and Speech Processing</subject><subject>Theoretical computing</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKAzEURYMoWKsf4G42LqPvJZkks5TSqlBRpPuQSTMlZZwpSSr496aMuHT1Fu-eyz2E3CLcI4B6SAi6RgrIKQgNFM_IDGvFqZKan5MZNEzQpgF1Sa5S2gOAZqhmpH499jm4GLKPwVYfY3tMuVqFnMOwq8auWvZ9OJSE7av3GD5DDl8-XZOLzvbJ3_zeOdmslpvFM12_Pb0sHtfUcdSZSr0VTKrWaqcb2dTAmcTac2a1YuCU8FuLXHTK8c7XDLjmVgvJW4uC8S2fE5xqXRxTir4zhzLBxm-DYE7aZtI2RductA0W5m5iDjaV0V20gwvpD2RaMKaVLDk25VJ5DTsfzX48xqHY_FP-Az42ZjQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Muñoz-Pérez, J.</creator><creator>de Cózar-Macías, O. D.</creator><creator>Blázquez-Parra, E. B.</creator><creator>Ladrón de Guevara-López, I.</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>Multicriteria Robust Fitting of Elliptical Primitives</title><author>Muñoz-Pérez, J. ; de Cózar-Macías, O. D. ; Blázquez-Parra, E. B. ; Ladrón de Guevara-López, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-68d4267ba8c89695032615e32a8720c74eda134f7c3fe520383a8463ba1423d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applications of Mathematics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical Methods in Physics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Signal,Image and Speech Processing</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz-Pérez, J.</creatorcontrib><creatorcontrib>de Cózar-Macías, O. D.</creatorcontrib><creatorcontrib>Blázquez-Parra, E. B.</creatorcontrib><creatorcontrib>Ladrón de Guevara-López, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz-Pérez, J.</au><au>de Cózar-Macías, O. D.</au><au>Blázquez-Parra, E. B.</au><au>Ladrón de Guevara-López, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicriteria Robust Fitting of Elliptical Primitives</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2014</date><risdate>2014</risdate><volume>49</volume><issue>2</issue><spage>492</spage><epage>509</epage><pages>492-509</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Geometric fitting is present in different fields of science, engineering and astronomy. In particular, ellipse shapes are some of the most commonly employed geometric features in digital image analysis and visual pattern recognition. Most geometric and algebraic methods are sensitive to noise and outlier points and so the results are not usually acceptable. In this paper, a robust geometric multicriteria method based on the mean absolute geometric error and the eccentricity to fit an ellipse to set of points is proposed. It is well known that the least mean absolute error criterion leads to robust estimations.
The experimental results on different real and synthetic data have shown that the proposed algorithm is robust to outliers. Moreover, it allows us to identify outliers and remove them.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10851-013-0480-1</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 2014, Vol.49 (2), p.492-509 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10851_013_0480_1 |
source | Springer Nature |
subjects | Algorithmics. Computability. Computer arithmetics Applications of Mathematics Applied sciences Artificial intelligence Computer Science Computer science control theory systems Exact sciences and technology Image Processing and Computer Vision Mathematical Methods in Physics Pattern recognition. Digital image processing. Computational geometry Signal,Image and Speech Processing Theoretical computing |
title | Multicriteria Robust Fitting of Elliptical Primitives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicriteria%20Robust%20Fitting%20of%20Elliptical%20Primitives&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Mu%C3%B1oz-P%C3%A9rez,%20J.&rft.date=2014&rft.volume=49&rft.issue=2&rft.spage=492&rft.epage=509&rft.pages=492-509&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-013-0480-1&rft_dat=%3Cpascalfrancis_cross%3E28422876%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-68d4267ba8c89695032615e32a8720c74eda134f7c3fe520383a8463ba1423d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |