Loading…
Variational-Bayes Optical Flow
The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s t -distributed unobserved random variab...
Saved in:
Published in: | Journal of mathematical imaging and vision 2014-11, Vol.50 (3), p.199-213 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3 |
container_end_page | 213 |
container_issue | 3 |
container_start_page | 199 |
container_title | Journal of mathematical imaging and vision |
container_volume | 50 |
creator | Chantas, Giannis Gkamas, Theodosios Nikou, Christophoros |
description | The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s
t
-distributed unobserved random variables, i.e., the prior is a multivariate Student’s
t
-distribution, while the only observations available is the temporal and spatial image difference. The proposed model takes into account the residual resulting from the linearization of the brightness constancy constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s
t
-distributed observation noise. To infer the model variables and parameters we recur to variational inference methodology leading to an expectation-maximization (EM) framework with update equations analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic framework where all of the model parameters are estimated automatically from the data. Experimental results show the improvement obtained by the proposed model which may substitute the standard algorithm in the initialization of more sophisticated optical flow schemes. |
doi_str_mv | 10.1007/s10851-014-0494-3 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10851_014_0494_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29094193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEd_gBuZjcvoe_lokqUOzigMzEJxG14zrXSobUkqMv_elopLV29x77m8w9g1wh0CmPuEYDVyQMVBOcXlCctQG8lNbuUpy8AJxZ0Dc84uUjoAgBVoMnbzTrGmoe5aavgjHcu03PVDHahZrpvu-5KdVdSk8ur3Ltjr-ult9cy3u83L6mHLg7R24FKVQlqjFTjILWAQBLoSuarIWpWLQhsVjCUUe0EFGp07QTYvVGEk7OWC4bwaYpdSLCvfx_qT4tEj-EnPz3p-1POTnpcjczszPaXx2ypSG-r0BwoHTqGbemLupTFqP8roD91XHG3TP-M_Q2VciA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variational-Bayes Optical Flow</title><source>Springer Nature</source><creator>Chantas, Giannis ; Gkamas, Theodosios ; Nikou, Christophoros</creator><creatorcontrib>Chantas, Giannis ; Gkamas, Theodosios ; Nikou, Christophoros</creatorcontrib><description>The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s
t
-distributed unobserved random variables, i.e., the prior is a multivariate Student’s
t
-distribution, while the only observations available is the temporal and spatial image difference. The proposed model takes into account the residual resulting from the linearization of the brightness constancy constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s
t
-distributed observation noise. To infer the model variables and parameters we recur to variational inference methodology leading to an expectation-maximization (EM) framework with update equations analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic framework where all of the model parameters are estimated automatically from the data. Experimental results show the improvement obtained by the proposed model which may substitute the standard algorithm in the initialization of more sophisticated optical flow schemes.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-014-0494-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Image Processing and Computer Vision ; Linear inference, regression ; Mathematical Methods in Physics ; Mathematics ; Pattern recognition. Digital image processing. Computational geometry ; Probability and statistics ; Sciences and techniques of general use ; Signal,Image and Speech Processing ; Statistics</subject><ispartof>Journal of mathematical imaging and vision, 2014-11, Vol.50 (3), p.199-213</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3</citedby><cites>FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29094193$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chantas, Giannis</creatorcontrib><creatorcontrib>Gkamas, Theodosios</creatorcontrib><creatorcontrib>Nikou, Christophoros</creatorcontrib><title>Variational-Bayes Optical Flow</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s
t
-distributed unobserved random variables, i.e., the prior is a multivariate Student’s
t
-distribution, while the only observations available is the temporal and spatial image difference. The proposed model takes into account the residual resulting from the linearization of the brightness constancy constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s
t
-distributed observation noise. To infer the model variables and parameters we recur to variational inference methodology leading to an expectation-maximization (EM) framework with update equations analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic framework where all of the model parameters are estimated automatically from the data. Experimental results show the improvement obtained by the proposed model which may substitute the standard algorithm in the initialization of more sophisticated optical flow schemes.</description><subject>Applications of Mathematics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Linear inference, regression</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Signal,Image and Speech Processing</subject><subject>Statistics</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEd_gBuZjcvoe_lokqUOzigMzEJxG14zrXSobUkqMv_elopLV29x77m8w9g1wh0CmPuEYDVyQMVBOcXlCctQG8lNbuUpy8AJxZ0Dc84uUjoAgBVoMnbzTrGmoe5aavgjHcu03PVDHahZrpvu-5KdVdSk8ur3Ltjr-ult9cy3u83L6mHLg7R24FKVQlqjFTjILWAQBLoSuarIWpWLQhsVjCUUe0EFGp07QTYvVGEk7OWC4bwaYpdSLCvfx_qT4tEj-EnPz3p-1POTnpcjczszPaXx2ypSG-r0BwoHTqGbemLupTFqP8roD91XHG3TP-M_Q2VciA</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Chantas, Giannis</creator><creator>Gkamas, Theodosios</creator><creator>Nikou, Christophoros</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141101</creationdate><title>Variational-Bayes Optical Flow</title><author>Chantas, Giannis ; Gkamas, Theodosios ; Nikou, Christophoros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Linear inference, regression</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Signal,Image and Speech Processing</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chantas, Giannis</creatorcontrib><creatorcontrib>Gkamas, Theodosios</creatorcontrib><creatorcontrib>Nikou, Christophoros</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chantas, Giannis</au><au>Gkamas, Theodosios</au><au>Nikou, Christophoros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational-Bayes Optical Flow</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>199</spage><epage>213</epage><pages>199-213</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s
t
-distributed unobserved random variables, i.e., the prior is a multivariate Student’s
t
-distribution, while the only observations available is the temporal and spatial image difference. The proposed model takes into account the residual resulting from the linearization of the brightness constancy constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s
t
-distributed observation noise. To infer the model variables and parameters we recur to variational inference methodology leading to an expectation-maximization (EM) framework with update equations analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic framework where all of the model parameters are estimated automatically from the data. Experimental results show the improvement obtained by the proposed model which may substitute the standard algorithm in the initialization of more sophisticated optical flow schemes.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10851-014-0494-3</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 2014-11, Vol.50 (3), p.199-213 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10851_014_0494_3 |
source | Springer Nature |
subjects | Applications of Mathematics Applied sciences Artificial intelligence Computer Science Computer science control theory systems Exact sciences and technology Image Processing and Computer Vision Linear inference, regression Mathematical Methods in Physics Mathematics Pattern recognition. Digital image processing. Computational geometry Probability and statistics Sciences and techniques of general use Signal,Image and Speech Processing Statistics |
title | Variational-Bayes Optical Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational-Bayes%20Optical%20Flow&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Chantas,%20Giannis&rft.date=2014-11-01&rft.volume=50&rft.issue=3&rft.spage=199&rft.epage=213&rft.pages=199-213&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-014-0494-3&rft_dat=%3Cpascalfrancis_cross%3E29094193%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |