Loading…

Variational-Bayes Optical Flow

The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s t -distributed unobserved random variab...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical imaging and vision 2014-11, Vol.50 (3), p.199-213
Main Authors: Chantas, Giannis, Gkamas, Theodosios, Nikou, Christophoros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3
cites cdi_FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3
container_end_page 213
container_issue 3
container_start_page 199
container_title Journal of mathematical imaging and vision
container_volume 50
creator Chantas, Giannis
Gkamas, Theodosios
Nikou, Christophoros
description The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s t -distributed unobserved random variables, i.e., the prior is a multivariate Student’s t -distribution, while the only observations available is the temporal and spatial image difference. The proposed model takes into account the residual resulting from the linearization of the brightness constancy constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s t -distributed observation noise. To infer the model variables and parameters we recur to variational inference methodology leading to an expectation-maximization (EM) framework with update equations analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic framework where all of the model parameters are estimated automatically from the data. Experimental results show the improvement obtained by the proposed model which may substitute the standard algorithm in the initialization of more sophisticated optical flow schemes.
doi_str_mv 10.1007/s10851-014-0494-3
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10851_014_0494_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29094193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEd_gBuZjcvoe_lokqUOzigMzEJxG14zrXSobUkqMv_elopLV29x77m8w9g1wh0CmPuEYDVyQMVBOcXlCctQG8lNbuUpy8AJxZ0Dc84uUjoAgBVoMnbzTrGmoe5aavgjHcu03PVDHahZrpvu-5KdVdSk8ur3Ltjr-ult9cy3u83L6mHLg7R24FKVQlqjFTjILWAQBLoSuarIWpWLQhsVjCUUe0EFGp07QTYvVGEk7OWC4bwaYpdSLCvfx_qT4tEj-EnPz3p-1POTnpcjczszPaXx2ypSG-r0BwoHTqGbemLupTFqP8roD91XHG3TP-M_Q2VciA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variational-Bayes Optical Flow</title><source>Springer Nature</source><creator>Chantas, Giannis ; Gkamas, Theodosios ; Nikou, Christophoros</creator><creatorcontrib>Chantas, Giannis ; Gkamas, Theodosios ; Nikou, Christophoros</creatorcontrib><description>The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s t -distributed unobserved random variables, i.e., the prior is a multivariate Student’s t -distribution, while the only observations available is the temporal and spatial image difference. The proposed model takes into account the residual resulting from the linearization of the brightness constancy constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s t -distributed observation noise. To infer the model variables and parameters we recur to variational inference methodology leading to an expectation-maximization (EM) framework with update equations analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic framework where all of the model parameters are estimated automatically from the data. Experimental results show the improvement obtained by the proposed model which may substitute the standard algorithm in the initialization of more sophisticated optical flow schemes.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-014-0494-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Image Processing and Computer Vision ; Linear inference, regression ; Mathematical Methods in Physics ; Mathematics ; Pattern recognition. Digital image processing. Computational geometry ; Probability and statistics ; Sciences and techniques of general use ; Signal,Image and Speech Processing ; Statistics</subject><ispartof>Journal of mathematical imaging and vision, 2014-11, Vol.50 (3), p.199-213</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3</citedby><cites>FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29094193$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chantas, Giannis</creatorcontrib><creatorcontrib>Gkamas, Theodosios</creatorcontrib><creatorcontrib>Nikou, Christophoros</creatorcontrib><title>Variational-Bayes Optical Flow</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s t -distributed unobserved random variables, i.e., the prior is a multivariate Student’s t -distribution, while the only observations available is the temporal and spatial image difference. The proposed model takes into account the residual resulting from the linearization of the brightness constancy constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s t -distributed observation noise. To infer the model variables and parameters we recur to variational inference methodology leading to an expectation-maximization (EM) framework with update equations analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic framework where all of the model parameters are estimated automatically from the data. Experimental results show the improvement obtained by the proposed model which may substitute the standard algorithm in the initialization of more sophisticated optical flow schemes.</description><subject>Applications of Mathematics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Linear inference, regression</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Signal,Image and Speech Processing</subject><subject>Statistics</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEd_gBuZjcvoe_lokqUOzigMzEJxG14zrXSobUkqMv_elopLV29x77m8w9g1wh0CmPuEYDVyQMVBOcXlCctQG8lNbuUpy8AJxZ0Dc84uUjoAgBVoMnbzTrGmoe5aavgjHcu03PVDHahZrpvu-5KdVdSk8ur3Ltjr-ult9cy3u83L6mHLg7R24FKVQlqjFTjILWAQBLoSuarIWpWLQhsVjCUUe0EFGp07QTYvVGEk7OWC4bwaYpdSLCvfx_qT4tEj-EnPz3p-1POTnpcjczszPaXx2ypSG-r0BwoHTqGbemLupTFqP8roD91XHG3TP-M_Q2VciA</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Chantas, Giannis</creator><creator>Gkamas, Theodosios</creator><creator>Nikou, Christophoros</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141101</creationdate><title>Variational-Bayes Optical Flow</title><author>Chantas, Giannis ; Gkamas, Theodosios ; Nikou, Christophoros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Linear inference, regression</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Signal,Image and Speech Processing</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chantas, Giannis</creatorcontrib><creatorcontrib>Gkamas, Theodosios</creatorcontrib><creatorcontrib>Nikou, Christophoros</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chantas, Giannis</au><au>Gkamas, Theodosios</au><au>Nikou, Christophoros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational-Bayes Optical Flow</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>199</spage><epage>213</epage><pages>199-213</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented, where the motion vectors are considered to be spatially varying Student’s t -distributed unobserved random variables, i.e., the prior is a multivariate Student’s t -distribution, while the only observations available is the temporal and spatial image difference. The proposed model takes into account the residual resulting from the linearization of the brightness constancy constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s t -distributed observation noise. To infer the model variables and parameters we recur to variational inference methodology leading to an expectation-maximization (EM) framework with update equations analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic framework where all of the model parameters are estimated automatically from the data. Experimental results show the improvement obtained by the proposed model which may substitute the standard algorithm in the initialization of more sophisticated optical flow schemes.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10851-014-0494-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2014-11, Vol.50 (3), p.199-213
issn 0924-9907
1573-7683
language eng
recordid cdi_crossref_primary_10_1007_s10851_014_0494_3
source Springer Nature
subjects Applications of Mathematics
Applied sciences
Artificial intelligence
Computer Science
Computer science
control theory
systems
Exact sciences and technology
Image Processing and Computer Vision
Linear inference, regression
Mathematical Methods in Physics
Mathematics
Pattern recognition. Digital image processing. Computational geometry
Probability and statistics
Sciences and techniques of general use
Signal,Image and Speech Processing
Statistics
title Variational-Bayes Optical Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational-Bayes%20Optical%20Flow&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Chantas,%20Giannis&rft.date=2014-11-01&rft.volume=50&rft.issue=3&rft.spage=199&rft.epage=213&rft.pages=199-213&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-014-0494-3&rft_dat=%3Cpascalfrancis_cross%3E29094193%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-34e2387540906801c2a05f264fa88462b574c78a12d2ab175692a86b4b730d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true