Loading…

Modeling linearity and ambipolarity in GFETs on different dielectrics for communication applications

A low voltage pristine graphene FET (GFET) using density functional theory and local density approximation (LDA) has been simulated on different dielectric regions i.e. k = 3.9, 5.0, 9.7 and 25. An enhanced device linearity and ambipolarity in its characteristics was achieved w.r.t. high k dielectri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2018-02, Vol.29 (4), p.2883-2889
Main Authors: Sharma, Preetika, Singh, Sukhbir, Gupta, Shuchi, Kaur, Inderpreet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-fd926223ba9ee104e16cffc943bc2a3bc1f7f79520256c275dbd37e1b57c58b83
cites cdi_FETCH-LOGICAL-c288t-fd926223ba9ee104e16cffc943bc2a3bc1f7f79520256c275dbd37e1b57c58b83
container_end_page 2889
container_issue 4
container_start_page 2883
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Sharma, Preetika
Singh, Sukhbir
Gupta, Shuchi
Kaur, Inderpreet
description A low voltage pristine graphene FET (GFET) using density functional theory and local density approximation (LDA) has been simulated on different dielectric regions i.e. k = 3.9, 5.0, 9.7 and 25. An enhanced device linearity and ambipolarity in its characteristics was achieved w.r.t. high k dielectric region in a GFET. The high k value of the dielectric region originated due to high capacitance yielded high linearity at low voltage operation below 2 V. The linear region obtained at k = 25 is reported to be highest (0–1.75 V) as compared to the lower dielectric values. Further, the ambipolar characteristics obtained showed most symmetrical characteristics giving similar mobility of 52 and 78 cm 2 /Vs respectively at a fixed drain bias of 1 V. Moreover, the GFET on highest k value of dielectric region exhibited highest on off ratio as compared to other lower values chosen. This observation provides a route to band gap engineering in graphene devices. Thus, for the same physical dimensions of GFET, the improvement in the device linearity and achieving symmetrical ambipolarity with the enhancement in current density at low voltages can be suggested by the use of high k dielectric region. This understanding of impact of dielectrics has great potential for future performance improvements in nanoelectronic device circuits such as amplifiers and mixers.
doi_str_mv 10.1007/s10854-017-8218-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10854_017_8218_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10854_017_8218_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-fd926223ba9ee104e16cffc943bc2a3bc1f7f79520256c275dbd37e1b57c58b83</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AgZ7E8fOEVVQkIq4gMTNcvxTuUqcyE4PfXtcpWcus6vVzGj1IfTI6BOjVDxnRiWvCWWCSGCSwBVaMS4qUkv4vUYr2nJBag5wi-5yPlBKm7qSK2Q_R-v6EPe4iNMpzCeso8V66MI09sshRLx9e_3OeIzYBu9dcnEum-udmVMwGfsxYTMOwzEGo-dQfHqa-sue79GN1312D5e5Rj-lbvNOdl_bj83LjhiQcibettAAVJ1unWO0dqwx3pu2rjoDugjzwouWAwXeGBDcdrYSjnVcGC47Wa0RW3pNGnNOzqsphUGnk2JUnTGpBZMqmNQZk4KSgSWTizfuXVKH8ZhiefOf0B-ELW1J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling linearity and ambipolarity in GFETs on different dielectrics for communication applications</title><source>Springer Link</source><creator>Sharma, Preetika ; Singh, Sukhbir ; Gupta, Shuchi ; Kaur, Inderpreet</creator><creatorcontrib>Sharma, Preetika ; Singh, Sukhbir ; Gupta, Shuchi ; Kaur, Inderpreet</creatorcontrib><description>A low voltage pristine graphene FET (GFET) using density functional theory and local density approximation (LDA) has been simulated on different dielectric regions i.e. k = 3.9, 5.0, 9.7 and 25. An enhanced device linearity and ambipolarity in its characteristics was achieved w.r.t. high k dielectric region in a GFET. The high k value of the dielectric region originated due to high capacitance yielded high linearity at low voltage operation below 2 V. The linear region obtained at k = 25 is reported to be highest (0–1.75 V) as compared to the lower dielectric values. Further, the ambipolar characteristics obtained showed most symmetrical characteristics giving similar mobility of 52 and 78 cm 2 /Vs respectively at a fixed drain bias of 1 V. Moreover, the GFET on highest k value of dielectric region exhibited highest on off ratio as compared to other lower values chosen. This observation provides a route to band gap engineering in graphene devices. Thus, for the same physical dimensions of GFET, the improvement in the device linearity and achieving symmetrical ambipolarity with the enhancement in current density at low voltages can be suggested by the use of high k dielectric region. This understanding of impact of dielectrics has great potential for future performance improvements in nanoelectronic device circuits such as amplifiers and mixers.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-8218-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Materials Science ; Optical and Electronic Materials</subject><ispartof>Journal of materials science. Materials in electronics, 2018-02, Vol.29 (4), p.2883-2889</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-fd926223ba9ee104e16cffc943bc2a3bc1f7f79520256c275dbd37e1b57c58b83</citedby><cites>FETCH-LOGICAL-c288t-fd926223ba9ee104e16cffc943bc2a3bc1f7f79520256c275dbd37e1b57c58b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharma, Preetika</creatorcontrib><creatorcontrib>Singh, Sukhbir</creatorcontrib><creatorcontrib>Gupta, Shuchi</creatorcontrib><creatorcontrib>Kaur, Inderpreet</creatorcontrib><title>Modeling linearity and ambipolarity in GFETs on different dielectrics for communication applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A low voltage pristine graphene FET (GFET) using density functional theory and local density approximation (LDA) has been simulated on different dielectric regions i.e. k = 3.9, 5.0, 9.7 and 25. An enhanced device linearity and ambipolarity in its characteristics was achieved w.r.t. high k dielectric region in a GFET. The high k value of the dielectric region originated due to high capacitance yielded high linearity at low voltage operation below 2 V. The linear region obtained at k = 25 is reported to be highest (0–1.75 V) as compared to the lower dielectric values. Further, the ambipolar characteristics obtained showed most symmetrical characteristics giving similar mobility of 52 and 78 cm 2 /Vs respectively at a fixed drain bias of 1 V. Moreover, the GFET on highest k value of dielectric region exhibited highest on off ratio as compared to other lower values chosen. This observation provides a route to band gap engineering in graphene devices. Thus, for the same physical dimensions of GFET, the improvement in the device linearity and achieving symmetrical ambipolarity with the enhancement in current density at low voltages can be suggested by the use of high k dielectric region. This understanding of impact of dielectrics has great potential for future performance improvements in nanoelectronic device circuits such as amplifiers and mixers.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AgZ7E8fOEVVQkIq4gMTNcvxTuUqcyE4PfXtcpWcus6vVzGj1IfTI6BOjVDxnRiWvCWWCSGCSwBVaMS4qUkv4vUYr2nJBag5wi-5yPlBKm7qSK2Q_R-v6EPe4iNMpzCeso8V66MI09sshRLx9e_3OeIzYBu9dcnEum-udmVMwGfsxYTMOwzEGo-dQfHqa-sue79GN1312D5e5Rj-lbvNOdl_bj83LjhiQcibettAAVJ1unWO0dqwx3pu2rjoDugjzwouWAwXeGBDcdrYSjnVcGC47Wa0RW3pNGnNOzqsphUGnk2JUnTGpBZMqmNQZk4KSgSWTizfuXVKH8ZhiefOf0B-ELW1J</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Sharma, Preetika</creator><creator>Singh, Sukhbir</creator><creator>Gupta, Shuchi</creator><creator>Kaur, Inderpreet</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Modeling linearity and ambipolarity in GFETs on different dielectrics for communication applications</title><author>Sharma, Preetika ; Singh, Sukhbir ; Gupta, Shuchi ; Kaur, Inderpreet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-fd926223ba9ee104e16cffc943bc2a3bc1f7f79520256c275dbd37e1b57c58b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Preetika</creatorcontrib><creatorcontrib>Singh, Sukhbir</creatorcontrib><creatorcontrib>Gupta, Shuchi</creatorcontrib><creatorcontrib>Kaur, Inderpreet</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Preetika</au><au>Singh, Sukhbir</au><au>Gupta, Shuchi</au><au>Kaur, Inderpreet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling linearity and ambipolarity in GFETs on different dielectrics for communication applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>29</volume><issue>4</issue><spage>2883</spage><epage>2889</epage><pages>2883-2889</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A low voltage pristine graphene FET (GFET) using density functional theory and local density approximation (LDA) has been simulated on different dielectric regions i.e. k = 3.9, 5.0, 9.7 and 25. An enhanced device linearity and ambipolarity in its characteristics was achieved w.r.t. high k dielectric region in a GFET. The high k value of the dielectric region originated due to high capacitance yielded high linearity at low voltage operation below 2 V. The linear region obtained at k = 25 is reported to be highest (0–1.75 V) as compared to the lower dielectric values. Further, the ambipolar characteristics obtained showed most symmetrical characteristics giving similar mobility of 52 and 78 cm 2 /Vs respectively at a fixed drain bias of 1 V. Moreover, the GFET on highest k value of dielectric region exhibited highest on off ratio as compared to other lower values chosen. This observation provides a route to band gap engineering in graphene devices. Thus, for the same physical dimensions of GFET, the improvement in the device linearity and achieving symmetrical ambipolarity with the enhancement in current density at low voltages can be suggested by the use of high k dielectric region. This understanding of impact of dielectrics has great potential for future performance improvements in nanoelectronic device circuits such as amplifiers and mixers.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-8218-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-02, Vol.29 (4), p.2883-2889
issn 0957-4522
1573-482X
language eng
recordid cdi_crossref_primary_10_1007_s10854_017_8218_2
source Springer Link
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Materials Science
Optical and Electronic Materials
title Modeling linearity and ambipolarity in GFETs on different dielectrics for communication applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20linearity%20and%20ambipolarity%20in%20GFETs%20on%20different%20dielectrics%20for%20communication%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Sharma,%20Preetika&rft.date=2018-02-01&rft.volume=29&rft.issue=4&rft.spage=2883&rft.epage=2889&rft.pages=2883-2889&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-8218-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s10854_017_8218_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-fd926223ba9ee104e16cffc943bc2a3bc1f7f79520256c275dbd37e1b57c58b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true