Loading…

The three-dimensional matching problem in Kalmanson matrices

We investigate the computational complexity of several special cases of the three-dimensional matching problem where the costs are decomposable and determined by a so-called Kalmanson matrix. For the minimization version we develop an efficient polynomial time algorithm that is based on dynamic prog...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization 2013-07, Vol.26 (1), p.1-9
Main Authors: Polyakovskiy, Sergey, Spieksma, Frits C. R., Woeginger, Gerhard J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-ca01a5bcc2268d367c657d8451e7ac0a1a52e32fcf741812589d306a1946c61f3
cites cdi_FETCH-LOGICAL-c362t-ca01a5bcc2268d367c657d8451e7ac0a1a52e32fcf741812589d306a1946c61f3
container_end_page 9
container_issue 1
container_start_page 1
container_title Journal of combinatorial optimization
container_volume 26
creator Polyakovskiy, Sergey
Spieksma, Frits C. R.
Woeginger, Gerhard J.
description We investigate the computational complexity of several special cases of the three-dimensional matching problem where the costs are decomposable and determined by a so-called Kalmanson matrix. For the minimization version we develop an efficient polynomial time algorithm that is based on dynamic programming. For the maximization version, we show that there is a universally optimal matching (whose structure is independent of the particular Kalmanson matrix).
doi_str_mv 10.1007/s10878-011-9426-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10878_011_9426_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10878_011_9426_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ca01a5bcc2268d367c657d8451e7ac0a1a52e32fcf741812589d306a1946c61f3</originalsourceid><addsrcrecordid>eNp9j81KxDAUhYMoOI4-gLu-QPTepE1ScCODfzjgZlyHTJpOM7TpkNRF396Uce3qHjjnu_ARco_wgADyMSEoqSgg0rpkgs4XZIWV5JQpJS5z5opRUUN1TW5SOgJAzuWKPO06V0xddI42fnAh-TGYvhjMZDsfDsUpjvveDYUPxafpBxPSGJY2euvSLblqTZ_c3d9dk-_Xl93mnW6_3j42z1tquWATtQbQVHtrGROq4UJaUclGlRU6aSyYXDLHWWtbWaJCVqm64SAM1qWwAlu-Jnj-a-OYUnStPkU_mDhrBL3o67O-zvp60ddzZtiZSXkbDi7q4_gTs1v6B_oFMaBd2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The three-dimensional matching problem in Kalmanson matrices</title><source>Springer Nature</source><creator>Polyakovskiy, Sergey ; Spieksma, Frits C. R. ; Woeginger, Gerhard J.</creator><creatorcontrib>Polyakovskiy, Sergey ; Spieksma, Frits C. R. ; Woeginger, Gerhard J.</creatorcontrib><description>We investigate the computational complexity of several special cases of the three-dimensional matching problem where the costs are decomposable and determined by a so-called Kalmanson matrix. For the minimization version we develop an efficient polynomial time algorithm that is based on dynamic programming. For the maximization version, we show that there is a universally optimal matching (whose structure is independent of the particular Kalmanson matrix).</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-011-9426-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Combinatorics ; Convex and Discrete Geometry ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2013-07, Vol.26 (1), p.1-9</ispartof><rights>The Author(s) 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ca01a5bcc2268d367c657d8451e7ac0a1a52e32fcf741812589d306a1946c61f3</citedby><cites>FETCH-LOGICAL-c362t-ca01a5bcc2268d367c657d8451e7ac0a1a52e32fcf741812589d306a1946c61f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Polyakovskiy, Sergey</creatorcontrib><creatorcontrib>Spieksma, Frits C. R.</creatorcontrib><creatorcontrib>Woeginger, Gerhard J.</creatorcontrib><title>The three-dimensional matching problem in Kalmanson matrices</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>We investigate the computational complexity of several special cases of the three-dimensional matching problem where the costs are decomposable and determined by a so-called Kalmanson matrix. For the minimization version we develop an efficient polynomial time algorithm that is based on dynamic programming. For the maximization version, we show that there is a universally optimal matching (whose structure is independent of the particular Kalmanson matrix).</description><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAUhYMoOI4-gLu-QPTepE1ScCODfzjgZlyHTJpOM7TpkNRF396Uce3qHjjnu_ARco_wgADyMSEoqSgg0rpkgs4XZIWV5JQpJS5z5opRUUN1TW5SOgJAzuWKPO06V0xddI42fnAh-TGYvhjMZDsfDsUpjvveDYUPxafpBxPSGJY2euvSLblqTZ_c3d9dk-_Xl93mnW6_3j42z1tquWATtQbQVHtrGROq4UJaUclGlRU6aSyYXDLHWWtbWaJCVqm64SAM1qWwAlu-Jnj-a-OYUnStPkU_mDhrBL3o67O-zvp60ddzZtiZSXkbDi7q4_gTs1v6B_oFMaBd2Q</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Polyakovskiy, Sergey</creator><creator>Spieksma, Frits C. R.</creator><creator>Woeginger, Gerhard J.</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130701</creationdate><title>The three-dimensional matching problem in Kalmanson matrices</title><author>Polyakovskiy, Sergey ; Spieksma, Frits C. R. ; Woeginger, Gerhard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ca01a5bcc2268d367c657d8451e7ac0a1a52e32fcf741812589d306a1946c61f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyakovskiy, Sergey</creatorcontrib><creatorcontrib>Spieksma, Frits C. R.</creatorcontrib><creatorcontrib>Woeginger, Gerhard J.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyakovskiy, Sergey</au><au>Spieksma, Frits C. R.</au><au>Woeginger, Gerhard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The three-dimensional matching problem in Kalmanson matrices</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>26</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>We investigate the computational complexity of several special cases of the three-dimensional matching problem where the costs are decomposable and determined by a so-called Kalmanson matrix. For the minimization version we develop an efficient polynomial time algorithm that is based on dynamic programming. For the maximization version, we show that there is a universally optimal matching (whose structure is independent of the particular Kalmanson matrix).</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10878-011-9426-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2013-07, Vol.26 (1), p.1-9
issn 1382-6905
1573-2886
language eng
recordid cdi_crossref_primary_10_1007_s10878_011_9426_y
source Springer Nature
subjects Combinatorics
Convex and Discrete Geometry
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
title The three-dimensional matching problem in Kalmanson matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20three-dimensional%20matching%20problem%20in%20Kalmanson%20matrices&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Polyakovskiy,%20Sergey&rft.date=2013-07-01&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-011-9426-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s10878_011_9426_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-ca01a5bcc2268d367c657d8451e7ac0a1a52e32fcf741812589d306a1946c61f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true