Loading…

A lower bound of the surviving rate of a planar graph with girth at least seven

Let G be a connected graph with n ≥2 vertices. Suppose that a fire breaks out at a vertex v of G . A firefighter starts to protect vertices. At each time interval, the firefighter protects one vertex not yet on fire. At the end of each time interval, the fire spreads to all the unprotected vertices...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization 2014-05, Vol.27 (4), p.621-642
Main Authors: Wang, Weifan, Finbow, Stephen, Wang, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-174412a7bd7901351b4c82785d19605b698baef2a5b07fc2e4683ba0467d77723
cites cdi_FETCH-LOGICAL-c288t-174412a7bd7901351b4c82785d19605b698baef2a5b07fc2e4683ba0467d77723
container_end_page 642
container_issue 4
container_start_page 621
container_title Journal of combinatorial optimization
container_volume 27
creator Wang, Weifan
Finbow, Stephen
Wang, Ping
description Let G be a connected graph with n ≥2 vertices. Suppose that a fire breaks out at a vertex v of G . A firefighter starts to protect vertices. At each time interval, the firefighter protects one vertex not yet on fire. At the end of each time interval, the fire spreads to all the unprotected vertices that have a neighbor on fire. Let sn( v ) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v . The surviving rate ρ ( G ) of G is defined to be ∑ v ∈ V ( G ) sn( v )/ n 2 , which is the average proportion of saved vertices. In this paper, we show that if G is a planar graph with n ≥2 vertices and having girth at least 7, then .
doi_str_mv 10.1007/s10878-012-9541-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10878_012_9541_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10878_012_9541_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-174412a7bd7901351b4c82785d19605b698baef2a5b07fc2e4683ba0467d77723</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhEVpoWnaB-hNL6B2V5Ys-RhC_yCQS3sWki07Dq5tJMehb1-Z9NzL7jDsLMNHyCPCEwKo54iglWaAnBVSIBNXZIVSZYxrnV8nnWnO8gLkLbmL8QgASYsV2W9oN5x9oG449RUdajodPI2nMLdz2zc02MkvrqVjZ3sbaBPseKDndjrQpg1p2ol23saJRj_7_p7c1LaL_uFvr8nX68vn9p3t9m8f282OlanQxFAJgdwqV6kCMJPoRKm50rLCIgfp8kI762tupQNVl9yLXGfOgshVpZTi2Zrg5W8ZhhiDr80Y2m8bfgyCWYiYCxGTiJiFiBEpwy-ZmG77xgdzHE6hTzX_Cf0CECRimg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A lower bound of the surviving rate of a planar graph with girth at least seven</title><source>Springer Nature</source><creator>Wang, Weifan ; Finbow, Stephen ; Wang, Ping</creator><creatorcontrib>Wang, Weifan ; Finbow, Stephen ; Wang, Ping</creatorcontrib><description>Let G be a connected graph with n ≥2 vertices. Suppose that a fire breaks out at a vertex v of G . A firefighter starts to protect vertices. At each time interval, the firefighter protects one vertex not yet on fire. At the end of each time interval, the fire spreads to all the unprotected vertices that have a neighbor on fire. Let sn( v ) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v . The surviving rate ρ ( G ) of G is defined to be ∑ v ∈ V ( G ) sn( v )/ n 2 , which is the average proportion of saved vertices. In this paper, we show that if G is a planar graph with n ≥2 vertices and having girth at least 7, then .</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-012-9541-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Combinatorics ; Convex and Discrete Geometry ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2014-05, Vol.27 (4), p.621-642</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-174412a7bd7901351b4c82785d19605b698baef2a5b07fc2e4683ba0467d77723</citedby><cites>FETCH-LOGICAL-c288t-174412a7bd7901351b4c82785d19605b698baef2a5b07fc2e4683ba0467d77723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Weifan</creatorcontrib><creatorcontrib>Finbow, Stephen</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><title>A lower bound of the surviving rate of a planar graph with girth at least seven</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>Let G be a connected graph with n ≥2 vertices. Suppose that a fire breaks out at a vertex v of G . A firefighter starts to protect vertices. At each time interval, the firefighter protects one vertex not yet on fire. At the end of each time interval, the fire spreads to all the unprotected vertices that have a neighbor on fire. Let sn( v ) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v . The surviving rate ρ ( G ) of G is defined to be ∑ v ∈ V ( G ) sn( v )/ n 2 , which is the average proportion of saved vertices. In this paper, we show that if G is a planar graph with n ≥2 vertices and having girth at least 7, then .</description><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qwzAQhEVpoWnaB-hNL6B2V5Ys-RhC_yCQS3sWki07Dq5tJMehb1-Z9NzL7jDsLMNHyCPCEwKo54iglWaAnBVSIBNXZIVSZYxrnV8nnWnO8gLkLbmL8QgASYsV2W9oN5x9oG449RUdajodPI2nMLdz2zc02MkvrqVjZ3sbaBPseKDndjrQpg1p2ol23saJRj_7_p7c1LaL_uFvr8nX68vn9p3t9m8f282OlanQxFAJgdwqV6kCMJPoRKm50rLCIgfp8kI762tupQNVl9yLXGfOgshVpZTi2Zrg5W8ZhhiDr80Y2m8bfgyCWYiYCxGTiJiFiBEpwy-ZmG77xgdzHE6hTzX_Cf0CECRimg</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Wang, Weifan</creator><creator>Finbow, Stephen</creator><creator>Wang, Ping</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140501</creationdate><title>A lower bound of the surviving rate of a planar graph with girth at least seven</title><author>Wang, Weifan ; Finbow, Stephen ; Wang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-174412a7bd7901351b4c82785d19605b698baef2a5b07fc2e4683ba0467d77723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Weifan</creatorcontrib><creatorcontrib>Finbow, Stephen</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Weifan</au><au>Finbow, Stephen</au><au>Wang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lower bound of the surviving rate of a planar graph with girth at least seven</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>27</volume><issue>4</issue><spage>621</spage><epage>642</epage><pages>621-642</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>Let G be a connected graph with n ≥2 vertices. Suppose that a fire breaks out at a vertex v of G . A firefighter starts to protect vertices. At each time interval, the firefighter protects one vertex not yet on fire. At the end of each time interval, the fire spreads to all the unprotected vertices that have a neighbor on fire. Let sn( v ) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v . The surviving rate ρ ( G ) of G is defined to be ∑ v ∈ V ( G ) sn( v )/ n 2 , which is the average proportion of saved vertices. In this paper, we show that if G is a planar graph with n ≥2 vertices and having girth at least 7, then .</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10878-012-9541-4</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2014-05, Vol.27 (4), p.621-642
issn 1382-6905
1573-2886
language eng
recordid cdi_crossref_primary_10_1007_s10878_012_9541_4
source Springer Nature
subjects Combinatorics
Convex and Discrete Geometry
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
title A lower bound of the surviving rate of a planar graph with girth at least seven
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lower%20bound%20of%20the%20surviving%20rate%20of%20a%20planar%20graph%20with%20girth%20at%20least%20seven&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Wang,%20Weifan&rft.date=2014-05-01&rft.volume=27&rft.issue=4&rft.spage=621&rft.epage=642&rft.pages=621-642&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-012-9541-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s10878_012_9541_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-174412a7bd7901351b4c82785d19605b698baef2a5b07fc2e4683ba0467d77723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true