Loading…
Speed of Sound of a Bose–Einstein Condensate with Dipole–Dipole Interactions
In the present work the case of a chromium Bose–Einstein condensate is considered. The model includes not only the presence of the so-called contact interaction but also a long range and anisotropic dipole–dipole interaction has been included. Some thermodynamical properties are analyzed. For instan...
Saved in:
Published in: | Journal of low temperature physics 2013-12, Vol.173 (5-6), p.343-353 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-dc8d431945babd6ccf548ada4d79e8431e9ce1591e4885d9ff91c4cdce05cfc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-dc8d431945babd6ccf548ada4d79e8431e9ce1591e4885d9ff91c4cdce05cfc23 |
container_end_page | 353 |
container_issue | 5-6 |
container_start_page | 343 |
container_title | Journal of low temperature physics |
container_volume | 173 |
creator | González-Fernández, B. Camacho, A. |
description | In the present work the case of a chromium Bose–Einstein condensate is considered. The model includes not only the presence of the so-called contact interaction but also a long range and anisotropic dipole–dipole interaction has been included. Some thermodynamical properties are analyzed. For instance, the size of the condensate, chemical potential, speed of sound, number of particles, etc., are deduced. It will be shown that this dipole–dipole interaction implies the emergence of anisotropy, for example, in the speed of sound. The possible use of this anisotropy as a tool for the analysis of dissipative mechanisms, for instance, Landau’s criterion for superfluidity, will be also discussed. |
doi_str_mv | 10.1007/s10909-013-0900-z |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10909_013_0900_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10909_013_0900_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-dc8d431945babd6ccf548ada4d79e8431e9ce1591e4885d9ff91c4cdce05cfc23</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMouFYfwFteIDrJbrrJUWvVQkGheg5pMtEtNSmbLWJPvoNv6JO4dT17mg_m_4fhI-ScwwUHqC8zBw2aAS9ZD8B2B6Tgsi5ZXcr6kBQAQjAhND8mJzmvAECrcVmQx8UG0dMU6CJt4y9Yep0yfn9-TZuYO2winaToMWbbIX1vuld602zSep8YgM5ih611XZNiPiVHwa4znv3NEXm-nT5N7tn84W42uZozJ5TqmHfKVyXXlVzapR87F2SlrLeVrzWqfoPaIZeaY6WU9DoEzV3lvEOQLjhRjggf7ro25dxiMJu2ebPth-Fg9krMoMT0Ssxeidn1HTF0cp-NL9iaVdq2sX_zn9IP_BZn4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Speed of Sound of a Bose–Einstein Condensate with Dipole–Dipole Interactions</title><source>Springer Nature</source><creator>González-Fernández, B. ; Camacho, A.</creator><creatorcontrib>González-Fernández, B. ; Camacho, A.</creatorcontrib><description>In the present work the case of a chromium Bose–Einstein condensate is considered. The model includes not only the presence of the so-called contact interaction but also a long range and anisotropic dipole–dipole interaction has been included. Some thermodynamical properties are analyzed. For instance, the size of the condensate, chemical potential, speed of sound, number of particles, etc., are deduced. It will be shown that this dipole–dipole interaction implies the emergence of anisotropy, for example, in the speed of sound. The possible use of this anisotropy as a tool for the analysis of dissipative mechanisms, for instance, Landau’s criterion for superfluidity, will be also discussed.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-013-0900-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Magnetic Materials ; Magnetism ; Physics ; Physics and Astronomy</subject><ispartof>Journal of low temperature physics, 2013-12, Vol.173 (5-6), p.343-353</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-dc8d431945babd6ccf548ada4d79e8431e9ce1591e4885d9ff91c4cdce05cfc23</citedby><cites>FETCH-LOGICAL-c288t-dc8d431945babd6ccf548ada4d79e8431e9ce1591e4885d9ff91c4cdce05cfc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>González-Fernández, B.</creatorcontrib><creatorcontrib>Camacho, A.</creatorcontrib><title>Speed of Sound of a Bose–Einstein Condensate with Dipole–Dipole Interactions</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>In the present work the case of a chromium Bose–Einstein condensate is considered. The model includes not only the presence of the so-called contact interaction but also a long range and anisotropic dipole–dipole interaction has been included. Some thermodynamical properties are analyzed. For instance, the size of the condensate, chemical potential, speed of sound, number of particles, etc., are deduced. It will be shown that this dipole–dipole interaction implies the emergence of anisotropy, for example, in the speed of sound. The possible use of this anisotropy as a tool for the analysis of dissipative mechanisms, for instance, Landau’s criterion for superfluidity, will be also discussed.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMouFYfwFteIDrJbrrJUWvVQkGheg5pMtEtNSmbLWJPvoNv6JO4dT17mg_m_4fhI-ScwwUHqC8zBw2aAS9ZD8B2B6Tgsi5ZXcr6kBQAQjAhND8mJzmvAECrcVmQx8UG0dMU6CJt4y9Yep0yfn9-TZuYO2winaToMWbbIX1vuld602zSep8YgM5ih611XZNiPiVHwa4znv3NEXm-nT5N7tn84W42uZozJ5TqmHfKVyXXlVzapR87F2SlrLeVrzWqfoPaIZeaY6WU9DoEzV3lvEOQLjhRjggf7ro25dxiMJu2ebPth-Fg9krMoMT0Ssxeidn1HTF0cp-NL9iaVdq2sX_zn9IP_BZn4g</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>González-Fernández, B.</creator><creator>Camacho, A.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131201</creationdate><title>Speed of Sound of a Bose–Einstein Condensate with Dipole–Dipole Interactions</title><author>González-Fernández, B. ; Camacho, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-dc8d431945babd6ccf548ada4d79e8431e9ce1591e4885d9ff91c4cdce05cfc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Fernández, B.</creatorcontrib><creatorcontrib>Camacho, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Fernández, B.</au><au>Camacho, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speed of Sound of a Bose–Einstein Condensate with Dipole–Dipole Interactions</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>173</volume><issue>5-6</issue><spage>343</spage><epage>353</epage><pages>343-353</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>In the present work the case of a chromium Bose–Einstein condensate is considered. The model includes not only the presence of the so-called contact interaction but also a long range and anisotropic dipole–dipole interaction has been included. Some thermodynamical properties are analyzed. For instance, the size of the condensate, chemical potential, speed of sound, number of particles, etc., are deduced. It will be shown that this dipole–dipole interaction implies the emergence of anisotropy, for example, in the speed of sound. The possible use of this anisotropy as a tool for the analysis of dissipative mechanisms, for instance, Landau’s criterion for superfluidity, will be also discussed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10909-013-0900-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2013-12, Vol.173 (5-6), p.343-353 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10909_013_0900_z |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Condensed Matter Physics Magnetic Materials Magnetism Physics Physics and Astronomy |
title | Speed of Sound of a Bose–Einstein Condensate with Dipole–Dipole Interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speed%20of%20Sound%20of%20a%20Bose%E2%80%93Einstein%20Condensate%20with%20Dipole%E2%80%93Dipole%20Interactions&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Gonz%C3%A1lez-Fern%C3%A1ndez,%20B.&rft.date=2013-12-01&rft.volume=173&rft.issue=5-6&rft.spage=343&rft.epage=353&rft.pages=343-353&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-013-0900-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s10909_013_0900_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-dc8d431945babd6ccf548ada4d79e8431e9ce1591e4885d9ff91c4cdce05cfc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |