Loading…

Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8

This paper presents a study on the synthesis of iron doped ZIF-8 with different molar ratio of Zn/Fe (Fe-ZIF-8) and sunlight driven photocatalytic activity of obtained materials. The materials were characteristic of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption...

Full description

Saved in:
Bibliographic Details
Published in:Journal of porous materials 2018-06, Vol.25 (3), p.857-869
Main Authors: Thanh, Mai Thi, Thien, Tran Vinh, Du, Pham Dinh, Hung, Nguyen Phi, Khieu, Dinh Quang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a study on the synthesis of iron doped ZIF-8 with different molar ratio of Zn/Fe (Fe-ZIF-8) and sunlight driven photocatalytic activity of obtained materials. The materials were characteristic of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms, diffusive reflectance UV–Vis (DR-UV–Vis) and atomic absorption spectroscopy (AAS). The results showed that Fe(II) as iron source could be directly introduced into ZIF-8 to form Fe-ZIF-8. Depending on the amount of iron(II) introduced, the Fe(II) or both Fe(II) and Fe(III) may exist in ZIF-8. Fe-ZIF-8 was selected as photocatalyst to decompose Remazol deep black B (RDB), a model of dye contaminant, under sunlight illumination. Undoped ZIF-8 seems not to catalyze for degradation of RDB while Fe-ZIF-8 exhibited sunlight-driven photocatalytic degradation of RDB. The kinetics of photocatalytic reaction were also addressed. This study suggests iron doped zeolite-imidazole framework Fe-ZIF-8 to be promising catalyst for the heterogeneous photo-catalytic dye degradation technique in visible region.
ISSN:1380-2224
1573-4854
DOI:10.1007/s10934-017-0498-7