Loading…

The Phase Transition of the Quantum Ising Model is Sharp

An analysis is presented of the phase transition of the quantum Ising model with transverse field on the d -dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2009-07, Vol.136 (2), p.231-273
Main Authors: Björnberg, J. E., Grimmett, G. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693
cites cdi_FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693
container_end_page 273
container_issue 2
container_start_page 231
container_title Journal of statistical physics
container_volume 136
creator Björnberg, J. E.
Grimmett, G. R.
description An analysis is presented of the phase transition of the quantum Ising model with transverse field on the d -dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in d +1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study.
doi_str_mv 10.1007/s10955-009-9788-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10955_009_9788_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10955_009_9788_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693</originalsourceid><addsrcrecordid>eNp9j01OwzAQRi0EEqFwAHa-gGFsx7G9RBU_lYoAkb3lJHaTqk0qO1nQ03AWToarsGY2I42-N_oeQrcU7iiAvI8UtBAEQBMtlSLHM5RRIRnRBeXnKANgjOSSikt0FeMWUlBpkSFdtg6_tzY6XAbbx27shh4PHo_p_jHZfpz2eBW7foNfh8btcBd_vj9bGw7X6MLbXXQ3f3uByqfHcvlC1m_Pq-XDmtRMqZFoUXmrXZEL2XAQSlBe17yxrqLWqyovCiu4rUGlYcCUTq2h8cLLqnKF5gtE57d1GGIMzptD6PY2fBkK5qRuZnWTjMxJ3RwTw2Ympmy_ccFshyn0qeU_0C9wJ1y8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Phase Transition of the Quantum Ising Model is Sharp</title><source>Springer Nature</source><creator>Björnberg, J. E. ; Grimmett, G. R.</creator><creatorcontrib>Björnberg, J. E. ; Grimmett, G. R.</creatorcontrib><description>An analysis is presented of the phase transition of the quantum Ising model with transverse field on the d -dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in d +1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-009-9788-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2009-07, Vol.136 (2), p.231-273</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693</citedby><cites>FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Björnberg, J. E.</creatorcontrib><creatorcontrib>Grimmett, G. R.</creatorcontrib><title>The Phase Transition of the Quantum Ising Model is Sharp</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>An analysis is presented of the phase transition of the quantum Ising model with transverse field on the d -dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in d +1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j01OwzAQRi0EEqFwAHa-gGFsx7G9RBU_lYoAkb3lJHaTqk0qO1nQ03AWToarsGY2I42-N_oeQrcU7iiAvI8UtBAEQBMtlSLHM5RRIRnRBeXnKANgjOSSikt0FeMWUlBpkSFdtg6_tzY6XAbbx27shh4PHo_p_jHZfpz2eBW7foNfh8btcBd_vj9bGw7X6MLbXXQ3f3uByqfHcvlC1m_Pq-XDmtRMqZFoUXmrXZEL2XAQSlBe17yxrqLWqyovCiu4rUGlYcCUTq2h8cLLqnKF5gtE57d1GGIMzptD6PY2fBkK5qRuZnWTjMxJ3RwTw2Ympmy_ccFshyn0qeU_0C9wJ1y8</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Björnberg, J. E.</creator><creator>Grimmett, G. R.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090701</creationdate><title>The Phase Transition of the Quantum Ising Model is Sharp</title><author>Björnberg, J. E. ; Grimmett, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Björnberg, J. E.</creatorcontrib><creatorcontrib>Grimmett, G. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Björnberg, J. E.</au><au>Grimmett, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Phase Transition of the Quantum Ising Model is Sharp</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>136</volume><issue>2</issue><spage>231</spage><epage>273</epage><pages>231-273</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>An analysis is presented of the phase transition of the quantum Ising model with transverse field on the d -dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in d +1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-009-9788-z</doi><tpages>43</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2009-07, Vol.136 (2), p.231-273
issn 0022-4715
1572-9613
language eng
recordid cdi_crossref_primary_10_1007_s10955_009_9788_z
source Springer Nature
subjects Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title The Phase Transition of the Quantum Ising Model is Sharp
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Phase%20Transition%20of%20the%20Quantum%20Ising%20Model%20is%C2%A0Sharp&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Bj%C3%B6rnberg,%20J.%20E.&rft.date=2009-07-01&rft.volume=136&rft.issue=2&rft.spage=231&rft.epage=273&rft.pages=231-273&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-009-9788-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s10955_009_9788_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true