Loading…
The Phase Transition of the Quantum Ising Model is Sharp
An analysis is presented of the phase transition of the quantum Ising model with transverse field on the d -dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the...
Saved in:
Published in: | Journal of statistical physics 2009-07, Vol.136 (2), p.231-273 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693 |
container_end_page | 273 |
container_issue | 2 |
container_start_page | 231 |
container_title | Journal of statistical physics |
container_volume | 136 |
creator | Björnberg, J. E. Grimmett, G. R. |
description | An analysis is presented of the phase transition of the quantum Ising model with transverse field on the
d
-dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in
d
+1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study. |
doi_str_mv | 10.1007/s10955-009-9788-z |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10955_009_9788_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10955_009_9788_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693</originalsourceid><addsrcrecordid>eNp9j01OwzAQRi0EEqFwAHa-gGFsx7G9RBU_lYoAkb3lJHaTqk0qO1nQ03AWToarsGY2I42-N_oeQrcU7iiAvI8UtBAEQBMtlSLHM5RRIRnRBeXnKANgjOSSikt0FeMWUlBpkSFdtg6_tzY6XAbbx27shh4PHo_p_jHZfpz2eBW7foNfh8btcBd_vj9bGw7X6MLbXXQ3f3uByqfHcvlC1m_Pq-XDmtRMqZFoUXmrXZEL2XAQSlBe17yxrqLWqyovCiu4rUGlYcCUTq2h8cLLqnKF5gtE57d1GGIMzptD6PY2fBkK5qRuZnWTjMxJ3RwTw2Ympmy_ccFshyn0qeU_0C9wJ1y8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Phase Transition of the Quantum Ising Model is Sharp</title><source>Springer Nature</source><creator>Björnberg, J. E. ; Grimmett, G. R.</creator><creatorcontrib>Björnberg, J. E. ; Grimmett, G. R.</creatorcontrib><description>An analysis is presented of the phase transition of the quantum Ising model with transverse field on the
d
-dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in
d
+1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-009-9788-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2009-07, Vol.136 (2), p.231-273</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693</citedby><cites>FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Björnberg, J. E.</creatorcontrib><creatorcontrib>Grimmett, G. R.</creatorcontrib><title>The Phase Transition of the Quantum Ising Model is Sharp</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>An analysis is presented of the phase transition of the quantum Ising model with transverse field on the
d
-dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in
d
+1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j01OwzAQRi0EEqFwAHa-gGFsx7G9RBU_lYoAkb3lJHaTqk0qO1nQ03AWToarsGY2I42-N_oeQrcU7iiAvI8UtBAEQBMtlSLHM5RRIRnRBeXnKANgjOSSikt0FeMWUlBpkSFdtg6_tzY6XAbbx27shh4PHo_p_jHZfpz2eBW7foNfh8btcBd_vj9bGw7X6MLbXXQ3f3uByqfHcvlC1m_Pq-XDmtRMqZFoUXmrXZEL2XAQSlBe17yxrqLWqyovCiu4rUGlYcCUTq2h8cLLqnKF5gtE57d1GGIMzptD6PY2fBkK5qRuZnWTjMxJ3RwTw2Ympmy_ccFshyn0qeU_0C9wJ1y8</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Björnberg, J. E.</creator><creator>Grimmett, G. R.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090701</creationdate><title>The Phase Transition of the Quantum Ising Model is Sharp</title><author>Björnberg, J. E. ; Grimmett, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Björnberg, J. E.</creatorcontrib><creatorcontrib>Grimmett, G. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Björnberg, J. E.</au><au>Grimmett, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Phase Transition of the Quantum Ising Model is Sharp</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>136</volume><issue>2</issue><spage>231</spage><epage>273</epage><pages>231-273</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>An analysis is presented of the phase transition of the quantum Ising model with transverse field on the
d
-dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in
d
+1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-009-9788-z</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2009-07, Vol.136 (2), p.231-273 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10955_009_9788_z |
source | Springer Nature |
subjects | Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | The Phase Transition of the Quantum Ising Model is Sharp |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Phase%20Transition%20of%20the%20Quantum%20Ising%20Model%20is%C2%A0Sharp&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Bj%C3%B6rnberg,%20J.%20E.&rft.date=2009-07-01&rft.volume=136&rft.issue=2&rft.spage=231&rft.epage=273&rft.pages=231-273&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-009-9788-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s10955_009_9788_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-95bfa9e6457d3058513cc3daeb1af8b466a53ac08888202891570df5f7bbe693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |