Loading…

Finite-Time Fluctuations in the Degree Statistics of Growing Networks

This paper presents a comprehensive analysis of the degree statistics in models for growing networks where new nodes enter one at a time and attach to one earlier node according to a stochastic rule. The models with uniform attachment, linear attachment (the Barabási-Albert model), and generalized p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2009-12, Vol.137 (5-6), p.1117-1146
Main Authors: Godrèche, C., Grandclaude, H., Luck, J. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-2bd088e12e006e3376573cbd719bc52a951b3f51f83a28d312ed33c971f7f2123
cites cdi_FETCH-LOGICAL-c288t-2bd088e12e006e3376573cbd719bc52a951b3f51f83a28d312ed33c971f7f2123
container_end_page 1146
container_issue 5-6
container_start_page 1117
container_title Journal of statistical physics
container_volume 137
creator Godrèche, C.
Grandclaude, H.
Luck, J. M.
description This paper presents a comprehensive analysis of the degree statistics in models for growing networks where new nodes enter one at a time and attach to one earlier node according to a stochastic rule. The models with uniform attachment, linear attachment (the Barabási-Albert model), and generalized preferential attachment with initial attractiveness are successively considered. The main emphasis is on finite-size (i.e., finite-time) effects, which are shown to exhibit different behaviors in three regimes of the size-degree plane: stationary, finite-size scaling, large deviations.
doi_str_mv 10.1007/s10955-009-9847-5
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10955_009_9847_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10955_009_9847_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2bd088e12e006e3376573cbd719bc52a951b3f51f83a28d312ed33c971f7f2123</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFp9AG-8AMpAWeBoqltNGj1Yz2SXhZXa7hqgaXwbn8Unk6aePU0y-b4_Mz9C10BvgFJ5m4BqIQilmmg1k0ScoAkIyYiugJ-iCaWMkZkEcY4uUlrTAiotJqiuwxCyI6uwdbje7GzeNTmMQ8JhwPnd4XvXR-fway7rlINNePQ_34s47sPQ42eX92P8SJfozDeb5K7-5hS91Q-r-SNZviye5ndLYplSmbC2o0o5YI7SynEuKyG5bTsJurWCNVpAy70Ar3jDVMcL2HFutQQvPQPGpwiOuTaOKUXnzWcM2yZ-GaDmUIQ5FmHKf-ZQhBHFYUcnFXboXTTrcReHcuY_0i-as2E-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite-Time Fluctuations in the Degree Statistics of Growing Networks</title><source>Springer Nature</source><creator>Godrèche, C. ; Grandclaude, H. ; Luck, J. M.</creator><creatorcontrib>Godrèche, C. ; Grandclaude, H. ; Luck, J. M.</creatorcontrib><description>This paper presents a comprehensive analysis of the degree statistics in models for growing networks where new nodes enter one at a time and attach to one earlier node according to a stochastic rule. The models with uniform attachment, linear attachment (the Barabási-Albert model), and generalized preferential attachment with initial attractiveness are successively considered. The main emphasis is on finite-size (i.e., finite-time) effects, which are shown to exhibit different behaviors in three regimes of the size-degree plane: stationary, finite-size scaling, large deviations.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-009-9847-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2009-12, Vol.137 (5-6), p.1117-1146</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2bd088e12e006e3376573cbd719bc52a951b3f51f83a28d312ed33c971f7f2123</citedby><cites>FETCH-LOGICAL-c288t-2bd088e12e006e3376573cbd719bc52a951b3f51f83a28d312ed33c971f7f2123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Godrèche, C.</creatorcontrib><creatorcontrib>Grandclaude, H.</creatorcontrib><creatorcontrib>Luck, J. M.</creatorcontrib><title>Finite-Time Fluctuations in the Degree Statistics of Growing Networks</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>This paper presents a comprehensive analysis of the degree statistics in models for growing networks where new nodes enter one at a time and attach to one earlier node according to a stochastic rule. The models with uniform attachment, linear attachment (the Barabási-Albert model), and generalized preferential attachment with initial attractiveness are successively considered. The main emphasis is on finite-size (i.e., finite-time) effects, which are shown to exhibit different behaviors in three regimes of the size-degree plane: stationary, finite-size scaling, large deviations.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxFp9AG-8AMpAWeBoqltNGj1Yz2SXhZXa7hqgaXwbn8Unk6aePU0y-b4_Mz9C10BvgFJ5m4BqIQilmmg1k0ScoAkIyYiugJ-iCaWMkZkEcY4uUlrTAiotJqiuwxCyI6uwdbje7GzeNTmMQ8JhwPnd4XvXR-fway7rlINNePQ_34s47sPQ42eX92P8SJfozDeb5K7-5hS91Q-r-SNZviye5ndLYplSmbC2o0o5YI7SynEuKyG5bTsJurWCNVpAy70Ar3jDVMcL2HFutQQvPQPGpwiOuTaOKUXnzWcM2yZ-GaDmUIQ5FmHKf-ZQhBHFYUcnFXboXTTrcReHcuY_0i-as2E-</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Godrèche, C.</creator><creator>Grandclaude, H.</creator><creator>Luck, J. M.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091201</creationdate><title>Finite-Time Fluctuations in the Degree Statistics of Growing Networks</title><author>Godrèche, C. ; Grandclaude, H. ; Luck, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2bd088e12e006e3376573cbd719bc52a951b3f51f83a28d312ed33c971f7f2123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godrèche, C.</creatorcontrib><creatorcontrib>Grandclaude, H.</creatorcontrib><creatorcontrib>Luck, J. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godrèche, C.</au><au>Grandclaude, H.</au><au>Luck, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Fluctuations in the Degree Statistics of Growing Networks</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>137</volume><issue>5-6</issue><spage>1117</spage><epage>1146</epage><pages>1117-1146</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>This paper presents a comprehensive analysis of the degree statistics in models for growing networks where new nodes enter one at a time and attach to one earlier node according to a stochastic rule. The models with uniform attachment, linear attachment (the Barabási-Albert model), and generalized preferential attachment with initial attractiveness are successively considered. The main emphasis is on finite-size (i.e., finite-time) effects, which are shown to exhibit different behaviors in three regimes of the size-degree plane: stationary, finite-size scaling, large deviations.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-009-9847-5</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2009-12, Vol.137 (5-6), p.1117-1146
issn 0022-4715
1572-9613
language eng
recordid cdi_crossref_primary_10_1007_s10955_009_9847_5
source Springer Nature
subjects Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Finite-Time Fluctuations in the Degree Statistics of Growing Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Fluctuations%20in%20the%20Degree%20Statistics%20of%C2%A0Growing%20Networks&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Godr%C3%A8che,%20C.&rft.date=2009-12-01&rft.volume=137&rft.issue=5-6&rft.spage=1117&rft.epage=1146&rft.pages=1117-1146&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-009-9847-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s10955_009_9847_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-2bd088e12e006e3376573cbd719bc52a951b3f51f83a28d312ed33c971f7f2123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true