Loading…
A Note on Large Deviations for the Stable Marriage of Poisson and Lebesgue with Random Appetites
Let Ξ ⊂ℝ d be a set of centers chosen according to a Poisson point process in ℝ d . Let ψ be an allocation of ℝ d to Ξ in the sense of the Gale–Shapley marriage problem, with the additional feature that every center ξ ∈ Ξ has an appetite given by a nonnegative random variable α . Generalizing some p...
Saved in:
Published in: | Journal of theoretical probability 2012-03, Vol.25 (1), p.77-91 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-b4ac0a0a018407686fae38bf1aca4f51c62a06211a5c9df467c1c4cafbb072223 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-b4ac0a0a018407686fae38bf1aca4f51c62a06211a5c9df467c1c4cafbb072223 |
container_end_page | 91 |
container_issue | 1 |
container_start_page | 77 |
container_title | Journal of theoretical probability |
container_volume | 25 |
creator | Díaz Pachón, Daniel Andrés |
description | Let
Ξ
⊂ℝ
d
be a set of centers chosen according to a Poisson point process in ℝ
d
. Let
ψ
be an allocation of ℝ
d
to
Ξ
in the sense of the Gale–Shapley marriage problem, with the additional feature that every center
ξ
∈
Ξ
has an appetite given by a nonnegative random variable
α
. Generalizing some previous results, we study large deviations for the distance of a typical point
x
∈ℝ
d
to its center
ψ
(
x
)∈
Ξ
, subject to some restrictions on the moments of
α
. |
doi_str_mv | 10.1007/s10959-010-0304-9 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10959_010_0304_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10959_010_0304_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-b4ac0a0a018407686fae38bf1aca4f51c62a06211a5c9df467c1c4cafbb072223</originalsourceid><addsrcrecordid>eNp9kFtKQzEQhoMoWKsL8C0biE5yrnks9QrHC16ew5w0aVPak5KkirtxLa7MlPos8zDw83_D8BFyzuGCAzSXkYOsJAMODAoomTwgI141gklRwCEZQStz2JZwTE5iXAKAlAAjghP66JOhfqAdhrmhV-bDYXJ-iNT6QNPC0NeE_crQBwzBYa54-_P97F2MGcJhRjvTmzjfGvrp0oK-5Miv6WSzMcklE0_JkcVVNGd_e0zeb67fpnese7q9n046pkXbJtaXqAHz8PxkU7e1RVO0veWosbQV17VAqAXnWGk5s2XdaK5LjbbvoRFCFGPC93d18DEGY9UmuDWGL8VB7RypvSOVHamdIyUzI_ZMzN1hboJa-m0Y8pv_QL-oMmrm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Note on Large Deviations for the Stable Marriage of Poisson and Lebesgue with Random Appetites</title><source>Springer Link</source><creator>Díaz Pachón, Daniel Andrés</creator><creatorcontrib>Díaz Pachón, Daniel Andrés</creatorcontrib><description>Let
Ξ
⊂ℝ
d
be a set of centers chosen according to a Poisson point process in ℝ
d
. Let
ψ
be an allocation of ℝ
d
to
Ξ
in the sense of the Gale–Shapley marriage problem, with the additional feature that every center
ξ
∈
Ξ
has an appetite given by a nonnegative random variable
α
. Generalizing some previous results, we study large deviations for the distance of a typical point
x
∈ℝ
d
to its center
ψ
(
x
)∈
Ξ
, subject to some restrictions on the moments of
α
.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-010-0304-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Journal of theoretical probability, 2012-03, Vol.25 (1), p.77-91</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-b4ac0a0a018407686fae38bf1aca4f51c62a06211a5c9df467c1c4cafbb072223</citedby><cites>FETCH-LOGICAL-c288t-b4ac0a0a018407686fae38bf1aca4f51c62a06211a5c9df467c1c4cafbb072223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Díaz Pachón, Daniel Andrés</creatorcontrib><title>A Note on Large Deviations for the Stable Marriage of Poisson and Lebesgue with Random Appetites</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>Let
Ξ
⊂ℝ
d
be a set of centers chosen according to a Poisson point process in ℝ
d
. Let
ψ
be an allocation of ℝ
d
to
Ξ
in the sense of the Gale–Shapley marriage problem, with the additional feature that every center
ξ
∈
Ξ
has an appetite given by a nonnegative random variable
α
. Generalizing some previous results, we study large deviations for the distance of a typical point
x
∈ℝ
d
to its center
ψ
(
x
)∈
Ξ
, subject to some restrictions on the moments of
α
.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kFtKQzEQhoMoWKsL8C0biE5yrnks9QrHC16ew5w0aVPak5KkirtxLa7MlPos8zDw83_D8BFyzuGCAzSXkYOsJAMODAoomTwgI141gklRwCEZQStz2JZwTE5iXAKAlAAjghP66JOhfqAdhrmhV-bDYXJ-iNT6QNPC0NeE_crQBwzBYa54-_P97F2MGcJhRjvTmzjfGvrp0oK-5Miv6WSzMcklE0_JkcVVNGd_e0zeb67fpnese7q9n046pkXbJtaXqAHz8PxkU7e1RVO0veWosbQV17VAqAXnWGk5s2XdaK5LjbbvoRFCFGPC93d18DEGY9UmuDWGL8VB7RypvSOVHamdIyUzI_ZMzN1hboJa-m0Y8pv_QL-oMmrm</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Díaz Pachón, Daniel Andrés</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120301</creationdate><title>A Note on Large Deviations for the Stable Marriage of Poisson and Lebesgue with Random Appetites</title><author>Díaz Pachón, Daniel Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-b4ac0a0a018407686fae38bf1aca4f51c62a06211a5c9df467c1c4cafbb072223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz Pachón, Daniel Andrés</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz Pachón, Daniel Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Large Deviations for the Stable Marriage of Poisson and Lebesgue with Random Appetites</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>25</volume><issue>1</issue><spage>77</spage><epage>91</epage><pages>77-91</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>Let
Ξ
⊂ℝ
d
be a set of centers chosen according to a Poisson point process in ℝ
d
. Let
ψ
be an allocation of ℝ
d
to
Ξ
in the sense of the Gale–Shapley marriage problem, with the additional feature that every center
ξ
∈
Ξ
has an appetite given by a nonnegative random variable
α
. Generalizing some previous results, we study large deviations for the distance of a typical point
x
∈ℝ
d
to its center
ψ
(
x
)∈
Ξ
, subject to some restrictions on the moments of
α
.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10959-010-0304-9</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-9840 |
ispartof | Journal of theoretical probability, 2012-03, Vol.25 (1), p.77-91 |
issn | 0894-9840 1572-9230 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10959_010_0304_9 |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Statistics |
title | A Note on Large Deviations for the Stable Marriage of Poisson and Lebesgue with Random Appetites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Large%20Deviations%20for%20the%20Stable%20Marriage%20of%C2%A0Poisson%20and%20Lebesgue%20with%20Random%20Appetites&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=D%C3%ADaz%C2%A0Pach%C3%B3n,%20Daniel%20Andr%C3%A9s&rft.date=2012-03-01&rft.volume=25&rft.issue=1&rft.spage=77&rft.epage=91&rft.pages=77-91&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-010-0304-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s10959_010_0304_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-b4ac0a0a018407686fae38bf1aca4f51c62a06211a5c9df467c1c4cafbb072223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |