Loading…
The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes
We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition wh...
Saved in:
Published in: | Journal of theoretical probability 2015-12, Vol.28 (4), p.1431-1446 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03 |
container_end_page | 1446 |
container_issue | 4 |
container_start_page | 1431 |
container_title | Journal of theoretical probability |
container_volume | 28 |
creator | Rafler, Mathias Zessin, Hans |
description | We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes. |
doi_str_mv | 10.1007/s10959-014-0543-2 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10959_014_0543_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10959_014_0543_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03</originalsourceid><addsrcrecordid>eNp9kEtKBDEQhoMoOI4ewF0OYLSSTj-y1MYnA85i3LgJmSQ9D9pkSHWDXswLeDEzjGtXRcH_FX99hFxyuOYA9Q1yUKViwCWDUhZMHJEJL2vBlCjgmEygUZKpRsIpOUPcAoBSABPyvlh7OourjTU9nUccxt4MHmns6N3P98pf0dakYHbUBEdf4jpgDHQT6JCxNobBfw777NzsTFj5Po50nqL1iB7PyUlnevQXf3NK3h7uF-0Tm70-Pre3M2aLshmYUbVqXGUaZ51S1he14FXXLZeFBONrLmubawNI4ThIAy4vyvKqKpfCdR6KKeGHuzZFxOQ7vUubD5O-NAe9l6MPcnSWo_dytMiMODCYs7l40ts45j97_Af6BQ6WZ60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes</title><source>Springer Nature</source><creator>Rafler, Mathias ; Zessin, Hans</creator><creatorcontrib>Rafler, Mathias ; Zessin, Hans</creatorcontrib><description>We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-014-0543-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Journal of theoretical probability, 2015-12, Vol.28 (4), p.1431-1446</ispartof><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03</citedby><cites>FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rafler, Mathias</creatorcontrib><creatorcontrib>Zessin, Hans</creatorcontrib><title>The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKBDEQhoMoOI4ewF0OYLSSTj-y1MYnA85i3LgJmSQ9D9pkSHWDXswLeDEzjGtXRcH_FX99hFxyuOYA9Q1yUKViwCWDUhZMHJEJL2vBlCjgmEygUZKpRsIpOUPcAoBSABPyvlh7OourjTU9nUccxt4MHmns6N3P98pf0dakYHbUBEdf4jpgDHQT6JCxNobBfw777NzsTFj5Po50nqL1iB7PyUlnevQXf3NK3h7uF-0Tm70-Pre3M2aLshmYUbVqXGUaZ51S1he14FXXLZeFBONrLmubawNI4ThIAy4vyvKqKpfCdR6KKeGHuzZFxOQ7vUubD5O-NAe9l6MPcnSWo_dytMiMODCYs7l40ts45j97_Af6BQ6WZ60</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Rafler, Mathias</creator><creator>Zessin, Hans</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151201</creationdate><title>The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes</title><author>Rafler, Mathias ; Zessin, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafler, Mathias</creatorcontrib><creatorcontrib>Zessin, Hans</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafler, Mathias</au><au>Zessin, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>28</volume><issue>4</issue><spage>1431</spage><epage>1446</epage><pages>1431-1446</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-014-0543-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-9840 |
ispartof | Journal of theoretical probability, 2015-12, Vol.28 (4), p.1431-1446 |
issn | 0894-9840 1572-9230 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10959_014_0543_2 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Statistics |
title | The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Logical%20Postulates%20of%20B%C3%B6ge,%20Carnap%20and%20Johnson%20in%20the%20Context%20of%20Papangelou%20Processes&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Rafler,%20Mathias&rft.date=2015-12-01&rft.volume=28&rft.issue=4&rft.spage=1431&rft.epage=1446&rft.pages=1431-1446&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-014-0543-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s10959_014_0543_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |