Loading…

The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes

We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition wh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical probability 2015-12, Vol.28 (4), p.1431-1446
Main Authors: Rafler, Mathias, Zessin, Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03
cites cdi_FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03
container_end_page 1446
container_issue 4
container_start_page 1431
container_title Journal of theoretical probability
container_volume 28
creator Rafler, Mathias
Zessin, Hans
description We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes.
doi_str_mv 10.1007/s10959-014-0543-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10959_014_0543_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10959_014_0543_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03</originalsourceid><addsrcrecordid>eNp9kEtKBDEQhoMoOI4ewF0OYLSSTj-y1MYnA85i3LgJmSQ9D9pkSHWDXswLeDEzjGtXRcH_FX99hFxyuOYA9Q1yUKViwCWDUhZMHJEJL2vBlCjgmEygUZKpRsIpOUPcAoBSABPyvlh7OourjTU9nUccxt4MHmns6N3P98pf0dakYHbUBEdf4jpgDHQT6JCxNobBfw777NzsTFj5Po50nqL1iB7PyUlnevQXf3NK3h7uF-0Tm70-Pre3M2aLshmYUbVqXGUaZ51S1he14FXXLZeFBONrLmubawNI4ThIAy4vyvKqKpfCdR6KKeGHuzZFxOQ7vUubD5O-NAe9l6MPcnSWo_dytMiMODCYs7l40ts45j97_Af6BQ6WZ60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes</title><source>Springer Nature</source><creator>Rafler, Mathias ; Zessin, Hans</creator><creatorcontrib>Rafler, Mathias ; Zessin, Hans</creatorcontrib><description>We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-014-0543-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Journal of theoretical probability, 2015-12, Vol.28 (4), p.1431-1446</ispartof><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03</citedby><cites>FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rafler, Mathias</creatorcontrib><creatorcontrib>Zessin, Hans</creatorcontrib><title>The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKBDEQhoMoOI4ewF0OYLSSTj-y1MYnA85i3LgJmSQ9D9pkSHWDXswLeDEzjGtXRcH_FX99hFxyuOYA9Q1yUKViwCWDUhZMHJEJL2vBlCjgmEygUZKpRsIpOUPcAoBSABPyvlh7OourjTU9nUccxt4MHmns6N3P98pf0dakYHbUBEdf4jpgDHQT6JCxNobBfw777NzsTFj5Po50nqL1iB7PyUlnevQXf3NK3h7uF-0Tm70-Pre3M2aLshmYUbVqXGUaZ51S1he14FXXLZeFBONrLmubawNI4ThIAy4vyvKqKpfCdR6KKeGHuzZFxOQ7vUubD5O-NAe9l6MPcnSWo_dytMiMODCYs7l40ts45j97_Af6BQ6WZ60</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Rafler, Mathias</creator><creator>Zessin, Hans</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151201</creationdate><title>The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes</title><author>Rafler, Mathias ; Zessin, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafler, Mathias</creatorcontrib><creatorcontrib>Zessin, Hans</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafler, Mathias</au><au>Zessin, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>28</volume><issue>4</issue><spage>1431</spage><epage>1446</epage><pages>1431-1446</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-014-0543-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2015-12, Vol.28 (4), p.1431-1446
issn 0894-9840
1572-9230
language eng
recordid cdi_crossref_primary_10_1007_s10959_014_0543_2
source Springer Nature
subjects Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Statistics
title The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Logical%20Postulates%20of%20B%C3%B6ge,%20Carnap%20and%20Johnson%20in%20the%20Context%20of%20Papangelou%20Processes&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Rafler,%20Mathias&rft.date=2015-12-01&rft.volume=28&rft.issue=4&rft.spage=1431&rft.epage=1446&rft.pages=1431-1446&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-014-0543-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s10959_014_0543_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-a9798d6a8dcd99ce37216ffbb340ae7147c8400042d104a0d4009c1665b2dfe03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true