Loading…

Investigation of thermal behaviour of hybrid nanostructures based on Fe2O3 and PAMAM dendrimers

Dendrimers or biofunctionalized dendrimers can be assembled onto magnetic iron oxide nanoparticles to stabilize or functionalize inorganic nanoparticles. Carboxylated poly(amidoamine) PAMAM dendrimers (generation 4.5) have been used for the synthesis of iron oxide nanoparticles, resulting nanocompos...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2012-10, Vol.110 (1), p.357-362
Main Authors: Popescu, Laura Madalina, Piticescu, Roxana Mioara, Stoiciu, Maria, Vasile, Eugeniu, Trusca, Roxana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dendrimers or biofunctionalized dendrimers can be assembled onto magnetic iron oxide nanoparticles to stabilize or functionalize inorganic nanoparticles. Carboxylated poly(amidoamine) PAMAM dendrimers (generation 4.5) have been used for the synthesis of iron oxide nanoparticles, resulting nanocomposites with potential biomedical applications. The present paper aims to systematically investigate the thermal behaviour of nanostructured hybrids based on ferric oxide and PAMAM dendrimers, by differential scanning calorimetry (DSC) technique. The novelty consists both in synthesis procedure of hybrid nanostructures as well as in DSC approach of these nanocomposites. For the first time, we propose a new method to prepare Fe 2 O 3 —dendrimer nanocomposite, using soft chemical process at high pressure. Commercial PAMAM dendrimers with carboxylic groups on its surface were used. When high pressure is applied, polymeric structures suffer morphological changes leading to hybrid nanostructures' formation. In the same time, crystallinity of inorganic nanoparticles is provided. DSC results showed an increase in thermal stability of composites as compared to commercial dendrimers. This could be due to the formation of strong interactions between ferric oxide and carboxyl groups, as confirmed by Fourier transform infrared spectroscopy. Electron microscopy analysis (SEM/EDX) and size measurements were performed to demonstrate the existence of nanosized particles.
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-012-2352-0