Loading…

Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables

For a fixed integer n  ≥ 2, let X 1 , …, X n be independent random variables (r.v.s) with distributions F 1 ,…, F n , respectively. Let Y be another random variable with distribution G belonging to the intersection of the longtailed distribution class and the O-subexponential distribution class. Whe...

Full description

Saved in:
Bibliographic Details
Published in:Lithuanian mathematical journal 2012, Vol.52 (1), p.29-39
Main Authors: Cheng, Dongya, Wang, Yuebao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-2a15c27d4cb10961934aa3ee8fb52ef657cf8e5445d7300fc3d74d5ee3e3055a3
cites cdi_FETCH-LOGICAL-c288t-2a15c27d4cb10961934aa3ee8fb52ef657cf8e5445d7300fc3d74d5ee3e3055a3
container_end_page 39
container_issue 1
container_start_page 29
container_title Lithuanian mathematical journal
container_volume 52
creator Cheng, Dongya
Wang, Yuebao
description For a fixed integer n  ≥ 2, let X 1 , …, X n be independent random variables (r.v.s) with distributions F 1 ,…, F n , respectively. Let Y be another random variable with distribution G belonging to the intersection of the longtailed distribution class and the O-subexponential distribution class. When each tail of F i , i  = 1 , …, n , is asymptotically less than or equal to the tail of G , we derive asymptotic lower and upper bounds for the ratio of the tail probabilities of the sum X 1  + ⋯ +  X n and Y . By taking different G ’s, we obtain general forms of some existing results.
doi_str_mv 10.1007/s10986-012-9153-9
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10986_012_9153_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10986_012_9153_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2a15c27d4cb10961934aa3ee8fb52ef657cf8e5445d7300fc3d74d5ee3e3055a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8AwY_4sRZVhUvqRIbWFuOPaaukjiy04r-PS5lzWYeV3NHMwehe0YfGKXNY2a0VTWhjJOWSUHaC7RgshFEKS4v0YKKWhBWN_wa3eS8o7SMM7pAYZWPwzTHOVjcwdYcQkw4ejxvASczh_jbmNDjKcXOdKEPc4B8UvN-wGZ0eDDfYSh1kcLoYIISxrm4RxcHfDApmK6HfIuuvOkz3P3lJfp8fvpYv5LN-8vberUhlis1E26YtLxxle3KSzVrRWWMAFC-kxx8LRvrFciqkq4RlHorXFM5CSBAUCmNWCJ23mtTzDmB11MKg0lHzag-sdJnVrqw0idWui0efvbkMjt-QdK7uE9jOfMf0w9yU26E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables</title><source>Springer Nature</source><creator>Cheng, Dongya ; Wang, Yuebao</creator><creatorcontrib>Cheng, Dongya ; Wang, Yuebao</creatorcontrib><description>For a fixed integer n  ≥ 2, let X 1 , …, X n be independent random variables (r.v.s) with distributions F 1 ,…, F n , respectively. Let Y be another random variable with distribution G belonging to the intersection of the longtailed distribution class and the O-subexponential distribution class. When each tail of F i , i  = 1 , …, n , is asymptotically less than or equal to the tail of G , we derive asymptotic lower and upper bounds for the ratio of the tail probabilities of the sum X 1  + ⋯ +  X n and Y . By taking different G ’s, we obtain general forms of some existing results.</description><identifier>ISSN: 0363-1672</identifier><identifier>EISSN: 1573-8825</identifier><identifier>DOI: 10.1007/s10986-012-9153-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Actuarial Sciences ; Mathematics ; Mathematics and Statistics ; Number Theory ; Ordinary Differential Equations ; Probability Theory and Stochastic Processes</subject><ispartof>Lithuanian mathematical journal, 2012, Vol.52 (1), p.29-39</ispartof><rights>Springer Science+Business Media, Inc. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2a15c27d4cb10961934aa3ee8fb52ef657cf8e5445d7300fc3d74d5ee3e3055a3</citedby><cites>FETCH-LOGICAL-c288t-2a15c27d4cb10961934aa3ee8fb52ef657cf8e5445d7300fc3d74d5ee3e3055a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cheng, Dongya</creatorcontrib><creatorcontrib>Wang, Yuebao</creatorcontrib><title>Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables</title><title>Lithuanian mathematical journal</title><addtitle>Lith Math J</addtitle><description>For a fixed integer n  ≥ 2, let X 1 , …, X n be independent random variables (r.v.s) with distributions F 1 ,…, F n , respectively. Let Y be another random variable with distribution G belonging to the intersection of the longtailed distribution class and the O-subexponential distribution class. When each tail of F i , i  = 1 , …, n , is asymptotically less than or equal to the tail of G , we derive asymptotic lower and upper bounds for the ratio of the tail probabilities of the sum X 1  + ⋯ +  X n and Y . By taking different G ’s, we obtain general forms of some existing results.</description><subject>Actuarial Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Ordinary Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0363-1672</issn><issn>1573-8825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8AwY_4sRZVhUvqRIbWFuOPaaukjiy04r-PS5lzWYeV3NHMwehe0YfGKXNY2a0VTWhjJOWSUHaC7RgshFEKS4v0YKKWhBWN_wa3eS8o7SMM7pAYZWPwzTHOVjcwdYcQkw4ejxvASczh_jbmNDjKcXOdKEPc4B8UvN-wGZ0eDDfYSh1kcLoYIISxrm4RxcHfDApmK6HfIuuvOkz3P3lJfp8fvpYv5LN-8vberUhlis1E26YtLxxle3KSzVrRWWMAFC-kxx8LRvrFciqkq4RlHorXFM5CSBAUCmNWCJ23mtTzDmB11MKg0lHzag-sdJnVrqw0idWui0efvbkMjt-QdK7uE9jOfMf0w9yU26E</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Cheng, Dongya</creator><creator>Wang, Yuebao</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables</title><author>Cheng, Dongya ; Wang, Yuebao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2a15c27d4cb10961934aa3ee8fb52ef657cf8e5445d7300fc3d74d5ee3e3055a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actuarial Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Ordinary Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Dongya</creatorcontrib><creatorcontrib>Wang, Yuebao</creatorcontrib><collection>CrossRef</collection><jtitle>Lithuanian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Dongya</au><au>Wang, Yuebao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables</atitle><jtitle>Lithuanian mathematical journal</jtitle><stitle>Lith Math J</stitle><date>2012</date><risdate>2012</risdate><volume>52</volume><issue>1</issue><spage>29</spage><epage>39</epage><pages>29-39</pages><issn>0363-1672</issn><eissn>1573-8825</eissn><abstract>For a fixed integer n  ≥ 2, let X 1 , …, X n be independent random variables (r.v.s) with distributions F 1 ,…, F n , respectively. Let Y be another random variable with distribution G belonging to the intersection of the longtailed distribution class and the O-subexponential distribution class. When each tail of F i , i  = 1 , …, n , is asymptotically less than or equal to the tail of G , we derive asymptotic lower and upper bounds for the ratio of the tail probabilities of the sum X 1  + ⋯ +  X n and Y . By taking different G ’s, we obtain general forms of some existing results.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10986-012-9153-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-1672
ispartof Lithuanian mathematical journal, 2012, Vol.52 (1), p.29-39
issn 0363-1672
1573-8825
language eng
recordid cdi_crossref_primary_10_1007_s10986_012_9153_9
source Springer Nature
subjects Actuarial Sciences
Mathematics
Mathematics and Statistics
Number Theory
Ordinary Differential Equations
Probability Theory and Stochastic Processes
title Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20behavior%20of%20the%20ratio%20of%20tail%20probabilities%20of%20sum%20and%20maximum%20of%20independent%20random%20variables&rft.jtitle=Lithuanian%20mathematical%20journal&rft.au=Cheng,%20Dongya&rft.date=2012&rft.volume=52&rft.issue=1&rft.spage=29&rft.epage=39&rft.pages=29-39&rft.issn=0363-1672&rft.eissn=1573-8825&rft_id=info:doi/10.1007/s10986-012-9153-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s10986_012_9153_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-2a15c27d4cb10961934aa3ee8fb52ef657cf8e5445d7300fc3d74d5ee3e3055a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true