Loading…

Covers for closed curves of length two

The least area α 2 of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 < α 2 < 0.449.

Saved in:
Bibliographic Details
Published in:Periodica mathematica Hungarica 2011-09, Vol.63 (1), p.1-17
Main Authors: Füredi, Zoltán, Wetzel, John E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93
cites cdi_FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93
container_end_page 17
container_issue 1
container_start_page 1
container_title Periodica mathematica Hungarica
container_volume 63
creator Füredi, Zoltán
Wetzel, John E.
description The least area α 2 of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 < α 2 < 0.449.
doi_str_mv 10.1007/s10998-011-7001-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10998_011_7001_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10998_011_7001_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93</originalsourceid><addsrcrecordid>eNp9j8FOwzAMhiMEEmXjAbjlxC1gJ2mbHlEFDGkSF3aO0jQZTKVBSTfEnp5M5czFlq3_s_wRcoNwhwD1fUJoGsUAkdUAyI5npMBSKcYVb85JASCQlQLEJblKaZcjeQMFuW3DwcVEfYjUDiG5ntp9PLhEg6eDG7fTO52-w5JceDMkd_3XF2Tz9PjWrtj69fmlfVgzy5WamBSqs1KKiqOtuO0B89y5zghfCiNRogFuhfJeVl2pKszFcBSi7lxV9o1YEJzv2hhSis7rr_jxaeKPRtAnUT2L6iyqT6L6mBk-Mylnx62Lehf2ccxv_gP9AleMVSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Covers for closed curves of length two</title><source>Springer Link</source><creator>Füredi, Zoltán ; Wetzel, John E.</creator><creatorcontrib>Füredi, Zoltán ; Wetzel, John E.</creatorcontrib><description>The least area α 2 of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 &lt; α 2 &lt; 0.449.</description><identifier>ISSN: 0031-5303</identifier><identifier>EISSN: 1588-2829</identifier><identifier>DOI: 10.1007/s10998-011-7001-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Periodica mathematica Hungarica, 2011-09, Vol.63 (1), p.1-17</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93</citedby><cites>FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Füredi, Zoltán</creatorcontrib><creatorcontrib>Wetzel, John E.</creatorcontrib><title>Covers for closed curves of length two</title><title>Periodica mathematica Hungarica</title><addtitle>Period Math Hung</addtitle><description>The least area α 2 of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 &lt; α 2 &lt; 0.449.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0031-5303</issn><issn>1588-2829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j8FOwzAMhiMEEmXjAbjlxC1gJ2mbHlEFDGkSF3aO0jQZTKVBSTfEnp5M5czFlq3_s_wRcoNwhwD1fUJoGsUAkdUAyI5npMBSKcYVb85JASCQlQLEJblKaZcjeQMFuW3DwcVEfYjUDiG5ntp9PLhEg6eDG7fTO52-w5JceDMkd_3XF2Tz9PjWrtj69fmlfVgzy5WamBSqs1KKiqOtuO0B89y5zghfCiNRogFuhfJeVl2pKszFcBSi7lxV9o1YEJzv2hhSis7rr_jxaeKPRtAnUT2L6iyqT6L6mBk-Mylnx62Lehf2ccxv_gP9AleMVSk</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Füredi, Zoltán</creator><creator>Wetzel, John E.</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110901</creationdate><title>Covers for closed curves of length two</title><author>Füredi, Zoltán ; Wetzel, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Füredi, Zoltán</creatorcontrib><creatorcontrib>Wetzel, John E.</creatorcontrib><collection>CrossRef</collection><jtitle>Periodica mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Füredi, Zoltán</au><au>Wetzel, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covers for closed curves of length two</atitle><jtitle>Periodica mathematica Hungarica</jtitle><stitle>Period Math Hung</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>63</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0031-5303</issn><eissn>1588-2829</eissn><abstract>The least area α 2 of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 &lt; α 2 &lt; 0.449.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10998-011-7001-z</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-5303
ispartof Periodica mathematica Hungarica, 2011-09, Vol.63 (1), p.1-17
issn 0031-5303
1588-2829
language eng
recordid cdi_crossref_primary_10_1007_s10998_011_7001_z
source Springer Link
subjects Mathematics
Mathematics and Statistics
title Covers for closed curves of length two
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covers%20for%20closed%20curves%20of%20length%20two&rft.jtitle=Periodica%20mathematica%20Hungarica&rft.au=F%C3%BCredi,%20Zolt%C3%A1n&rft.date=2011-09-01&rft.volume=63&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0031-5303&rft.eissn=1588-2829&rft_id=info:doi/10.1007/s10998-011-7001-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s10998_011_7001_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true