Loading…
Covers for closed curves of length two
The least area α 2 of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 < α 2 < 0.449.
Saved in:
Published in: | Periodica mathematica Hungarica 2011-09, Vol.63 (1), p.1-17 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 1 |
container_title | Periodica mathematica Hungarica |
container_volume | 63 |
creator | Füredi, Zoltán Wetzel, John E. |
description | The least area
α
2
of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 <
α
2
< 0.449. |
doi_str_mv | 10.1007/s10998-011-7001-z |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10998_011_7001_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10998_011_7001_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93</originalsourceid><addsrcrecordid>eNp9j8FOwzAMhiMEEmXjAbjlxC1gJ2mbHlEFDGkSF3aO0jQZTKVBSTfEnp5M5czFlq3_s_wRcoNwhwD1fUJoGsUAkdUAyI5npMBSKcYVb85JASCQlQLEJblKaZcjeQMFuW3DwcVEfYjUDiG5ntp9PLhEg6eDG7fTO52-w5JceDMkd_3XF2Tz9PjWrtj69fmlfVgzy5WamBSqs1KKiqOtuO0B89y5zghfCiNRogFuhfJeVl2pKszFcBSi7lxV9o1YEJzv2hhSis7rr_jxaeKPRtAnUT2L6iyqT6L6mBk-Mylnx62Lehf2ccxv_gP9AleMVSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Covers for closed curves of length two</title><source>Springer Link</source><creator>Füredi, Zoltán ; Wetzel, John E.</creator><creatorcontrib>Füredi, Zoltán ; Wetzel, John E.</creatorcontrib><description>The least area
α
2
of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 <
α
2
< 0.449.</description><identifier>ISSN: 0031-5303</identifier><identifier>EISSN: 1588-2829</identifier><identifier>DOI: 10.1007/s10998-011-7001-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Periodica mathematica Hungarica, 2011-09, Vol.63 (1), p.1-17</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93</citedby><cites>FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Füredi, Zoltán</creatorcontrib><creatorcontrib>Wetzel, John E.</creatorcontrib><title>Covers for closed curves of length two</title><title>Periodica mathematica Hungarica</title><addtitle>Period Math Hung</addtitle><description>The least area
α
2
of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 <
α
2
< 0.449.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0031-5303</issn><issn>1588-2829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j8FOwzAMhiMEEmXjAbjlxC1gJ2mbHlEFDGkSF3aO0jQZTKVBSTfEnp5M5czFlq3_s_wRcoNwhwD1fUJoGsUAkdUAyI5npMBSKcYVb85JASCQlQLEJblKaZcjeQMFuW3DwcVEfYjUDiG5ntp9PLhEg6eDG7fTO52-w5JceDMkd_3XF2Tz9PjWrtj69fmlfVgzy5WamBSqs1KKiqOtuO0B89y5zghfCiNRogFuhfJeVl2pKszFcBSi7lxV9o1YEJzv2hhSis7rr_jxaeKPRtAnUT2L6iyqT6L6mBk-Mylnx62Lehf2ccxv_gP9AleMVSk</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Füredi, Zoltán</creator><creator>Wetzel, John E.</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110901</creationdate><title>Covers for closed curves of length two</title><author>Füredi, Zoltán ; Wetzel, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Füredi, Zoltán</creatorcontrib><creatorcontrib>Wetzel, John E.</creatorcontrib><collection>CrossRef</collection><jtitle>Periodica mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Füredi, Zoltán</au><au>Wetzel, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covers for closed curves of length two</atitle><jtitle>Periodica mathematica Hungarica</jtitle><stitle>Period Math Hung</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>63</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0031-5303</issn><eissn>1588-2829</eissn><abstract>The least area
α
2
of a convex set in the plane large enough to contain a congruent copy of every closed curve of length two lies between 0.385 and 0.491, as has been known for more than 38 years. We improve these bounds by showing that 0.386 <
α
2
< 0.449.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10998-011-7001-z</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-5303 |
ispartof | Periodica mathematica Hungarica, 2011-09, Vol.63 (1), p.1-17 |
issn | 0031-5303 1588-2829 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10998_011_7001_z |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics |
title | Covers for closed curves of length two |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covers%20for%20closed%20curves%20of%20length%20two&rft.jtitle=Periodica%20mathematica%20Hungarica&rft.au=F%C3%BCredi,%20Zolt%C3%A1n&rft.date=2011-09-01&rft.volume=63&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0031-5303&rft.eissn=1588-2829&rft_id=info:doi/10.1007/s10998-011-7001-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s10998_011_7001_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-438bc443621c62cd018bcbeba3f53a4141a02c38ff46b5861b58a21337be65d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |