Loading…
Distribution functions of ratio sequences, IV
In this paper we continue our study of distribution functions g ( x ) of the sequence of blocks , n = 1, 2, …, where x n is an increasing sequence of positive integers. Applying a special algorithm we find a lower bound of g ( x ) also for x n with lower asymptotic density = 0. This extends the lowe...
Saved in:
Published in: | Periodica mathematica Hungarica 2013-03, Vol.66 (1), p.1-22 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-2c2ceb1fdcaecb1ebd9bc6f54b1943c0ab7321d30a533e9fcb1dc243ba6a28c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-2c2ceb1fdcaecb1ebd9bc6f54b1943c0ab7321d30a533e9fcb1dc243ba6a28c53 |
container_end_page | 22 |
container_issue | 1 |
container_start_page | 1 |
container_title | Periodica mathematica Hungarica |
container_volume | 66 |
creator | Baláž, Vladimir Mišík, Ladislav Strauch, Oto Tóth, János T. |
description | In this paper we continue our study of distribution functions
g
(
x
) of the sequence of blocks
,
n
= 1, 2, …, where
x
n
is an increasing sequence of positive integers. Applying a special algorithm we find a lower bound of
g
(
x
) also for
x
n
with lower asymptotic density
= 0. This extends the lower bound of
g
(
x
) for
x
n
with
> 0 found in the previous part III. We also prove that for an arbitrary real sequence
y
n
∈ [0, 1] there exists an increasing sequence xn of positive integers such that any distribution function of
y
n
is also a distribution function of
X
n
. |
doi_str_mv | 10.1007/s10998-013-4116-4 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10998_013_4116_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10998_013_4116_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2c2ceb1fdcaecb1ebd9bc6f54b1943c0ab7321d30a533e9fcb1dc243ba6a28c53</originalsourceid><addsrcrecordid>eNp9j7tOxDAQRS0EEmHhA-jyARhmbCdrl2h5rbQSDdBa9sRGWUECdlLw93gVaqq5xT1Xcxi7RLhGgPVNRjBGc0DJFWLL1RGrsNGaCy3MMasAJPJGgjxlZznvAQoloWL8rs9T6v089eNQx3mgQ8j1GOvkSqxz-J7DQCFf1du3c3YS3UcOF393xV4f7l82T3z3_Ljd3O44Ca0nLkhQ8Bg7coE8Bt8ZT21slEejJIHzaymwk-AaKYOJpdORUNK71glNjVwxXHYpjTmnEO1X6j9d-rEI9uBrF19bfO3B16rCiIXJpTu8h2T345yG8uY_0C8xClkG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distribution functions of ratio sequences, IV</title><source>Springer Link</source><creator>Baláž, Vladimir ; Mišík, Ladislav ; Strauch, Oto ; Tóth, János T.</creator><creatorcontrib>Baláž, Vladimir ; Mišík, Ladislav ; Strauch, Oto ; Tóth, János T.</creatorcontrib><description>In this paper we continue our study of distribution functions
g
(
x
) of the sequence of blocks
,
n
= 1, 2, …, where
x
n
is an increasing sequence of positive integers. Applying a special algorithm we find a lower bound of
g
(
x
) also for
x
n
with lower asymptotic density
= 0. This extends the lower bound of
g
(
x
) for
x
n
with
> 0 found in the previous part III. We also prove that for an arbitrary real sequence
y
n
∈ [0, 1] there exists an increasing sequence xn of positive integers such that any distribution function of
y
n
is also a distribution function of
X
n
.</description><identifier>ISSN: 0031-5303</identifier><identifier>EISSN: 1588-2829</identifier><identifier>DOI: 10.1007/s10998-013-4116-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Periodica mathematica Hungarica, 2013-03, Vol.66 (1), p.1-22</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2c2ceb1fdcaecb1ebd9bc6f54b1943c0ab7321d30a533e9fcb1dc243ba6a28c53</citedby><cites>FETCH-LOGICAL-c288t-2c2ceb1fdcaecb1ebd9bc6f54b1943c0ab7321d30a533e9fcb1dc243ba6a28c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Baláž, Vladimir</creatorcontrib><creatorcontrib>Mišík, Ladislav</creatorcontrib><creatorcontrib>Strauch, Oto</creatorcontrib><creatorcontrib>Tóth, János T.</creatorcontrib><title>Distribution functions of ratio sequences, IV</title><title>Periodica mathematica Hungarica</title><addtitle>Period Math Hung</addtitle><description>In this paper we continue our study of distribution functions
g
(
x
) of the sequence of blocks
,
n
= 1, 2, …, where
x
n
is an increasing sequence of positive integers. Applying a special algorithm we find a lower bound of
g
(
x
) also for
x
n
with lower asymptotic density
= 0. This extends the lower bound of
g
(
x
) for
x
n
with
> 0 found in the previous part III. We also prove that for an arbitrary real sequence
y
n
∈ [0, 1] there exists an increasing sequence xn of positive integers such that any distribution function of
y
n
is also a distribution function of
X
n
.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0031-5303</issn><issn>1588-2829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9j7tOxDAQRS0EEmHhA-jyARhmbCdrl2h5rbQSDdBa9sRGWUECdlLw93gVaqq5xT1Xcxi7RLhGgPVNRjBGc0DJFWLL1RGrsNGaCy3MMasAJPJGgjxlZznvAQoloWL8rs9T6v089eNQx3mgQ8j1GOvkSqxz-J7DQCFf1du3c3YS3UcOF393xV4f7l82T3z3_Ljd3O44Ca0nLkhQ8Bg7coE8Bt8ZT21slEejJIHzaymwk-AaKYOJpdORUNK71glNjVwxXHYpjTmnEO1X6j9d-rEI9uBrF19bfO3B16rCiIXJpTu8h2T345yG8uY_0C8xClkG</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Baláž, Vladimir</creator><creator>Mišík, Ladislav</creator><creator>Strauch, Oto</creator><creator>Tóth, János T.</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130301</creationdate><title>Distribution functions of ratio sequences, IV</title><author>Baláž, Vladimir ; Mišík, Ladislav ; Strauch, Oto ; Tóth, János T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2c2ceb1fdcaecb1ebd9bc6f54b1943c0ab7321d30a533e9fcb1dc243ba6a28c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baláž, Vladimir</creatorcontrib><creatorcontrib>Mišík, Ladislav</creatorcontrib><creatorcontrib>Strauch, Oto</creatorcontrib><creatorcontrib>Tóth, János T.</creatorcontrib><collection>CrossRef</collection><jtitle>Periodica mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baláž, Vladimir</au><au>Mišík, Ladislav</au><au>Strauch, Oto</au><au>Tóth, János T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution functions of ratio sequences, IV</atitle><jtitle>Periodica mathematica Hungarica</jtitle><stitle>Period Math Hung</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>66</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0031-5303</issn><eissn>1588-2829</eissn><abstract>In this paper we continue our study of distribution functions
g
(
x
) of the sequence of blocks
,
n
= 1, 2, …, where
x
n
is an increasing sequence of positive integers. Applying a special algorithm we find a lower bound of
g
(
x
) also for
x
n
with lower asymptotic density
= 0. This extends the lower bound of
g
(
x
) for
x
n
with
> 0 found in the previous part III. We also prove that for an arbitrary real sequence
y
n
∈ [0, 1] there exists an increasing sequence xn of positive integers such that any distribution function of
y
n
is also a distribution function of
X
n
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10998-013-4116-4</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-5303 |
ispartof | Periodica mathematica Hungarica, 2013-03, Vol.66 (1), p.1-22 |
issn | 0031-5303 1588-2829 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10998_013_4116_4 |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics |
title | Distribution functions of ratio sequences, IV |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20functions%20of%20ratio%20sequences,%20IV&rft.jtitle=Periodica%20mathematica%20Hungarica&rft.au=Bal%C3%A1%C5%BE,%20Vladimir&rft.date=2013-03-01&rft.volume=66&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0031-5303&rft.eissn=1588-2829&rft_id=info:doi/10.1007/s10998-013-4116-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s10998_013_4116_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-2c2ceb1fdcaecb1ebd9bc6f54b1943c0ab7321d30a533e9fcb1dc243ba6a28c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |