Loading…
The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics
The Lie–Rinehart algebra of a (connected) manifold , defined by the Lie structure of the vector fields, their action and their module structure over , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra ,...
Saved in:
Published in: | Letters in mathematical physics 2008-12, Vol.86 (2-3), p.135-150 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43 |
container_end_page | 150 |
container_issue | 2-3 |
container_start_page | 135 |
container_title | Letters in mathematical physics |
container_volume | 86 |
creator | Morchio, Giovanni Strocchi, Franco |
description | The Lie–Rinehart algebra of a (connected) manifold
, defined by the Lie structure of the vector fields, their action and their module structure over
, is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra
, with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact
)
which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to
Z
=
i
z
,
z
= 0 and
, respectively; canonical quantization uniquely follows from such a general geometrical structure. For
, the regular factorial Hilbert space representations of
describe quantum mechanics on
. For
z
= 0, if Diff(
) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on
. |
doi_str_mv | 10.1007/s11005-008-0280-5 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11005_008_0280_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11005_008_0280_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHa-gGFs14mzrCr-pKICateW4zitq9RBngaJHXfghpwEV2XN6i3mfaOnj5BrDjccoLxFnkMxAM1AaGDqhIy4KiUDJeGUjECWJauAl-fkAnELmREKRmSx3Hg6D_7n6_stRL-xaU9XMXz4hLajL31A7COddmtfJ0v7ls46ixhcPtrY0NfBxv2wo8_ebWwMDi_JWWs79Fd_OSar-7vl7JHNFw9Ps-mcOaH1nhW61XoixcRxoVtR1bwUvGo0F7US0nnrAGzlPIeCF0I5oepG6qoBK1xd-IkcE37861KPmHxr3lPY2fRpOJiDEXM0YrIRczBiVGbEkcHcjWufzLYfUswz_4F-ATyTY8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics</title><source>Springer Nature</source><creator>Morchio, Giovanni ; Strocchi, Franco</creator><creatorcontrib>Morchio, Giovanni ; Strocchi, Franco</creatorcontrib><description>The Lie–Rinehart algebra of a (connected) manifold
, defined by the Lie structure of the vector fields, their action and their module structure over
, is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra
, with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact
)
which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to
Z
=
i
z
,
z
= 0 and
, respectively; canonical quantization uniquely follows from such a general geometrical structure. For
, the regular factorial Hilbert space representations of
describe quantum mechanics on
. For
z
= 0, if Diff(
) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on
.</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-008-0280-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Complex Systems ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Letters in mathematical physics, 2008-12, Vol.86 (2-3), p.135-150</ispartof><rights>Springer 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43</citedby><cites>FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Morchio, Giovanni</creatorcontrib><creatorcontrib>Strocchi, Franco</creatorcontrib><title>The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>The Lie–Rinehart algebra of a (connected) manifold
, defined by the Lie structure of the vector fields, their action and their module structure over
, is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra
, with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact
)
which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to
Z
=
i
z
,
z
= 0 and
, respectively; canonical quantization uniquely follows from such a general geometrical structure. For
, the regular factorial Hilbert space representations of
describe quantum mechanics on
. For
z
= 0, if Diff(
) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on
.</description><subject>Complex Systems</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHa-gGFs14mzrCr-pKICateW4zitq9RBngaJHXfghpwEV2XN6i3mfaOnj5BrDjccoLxFnkMxAM1AaGDqhIy4KiUDJeGUjECWJauAl-fkAnELmREKRmSx3Hg6D_7n6_stRL-xaU9XMXz4hLajL31A7COddmtfJ0v7ls46ixhcPtrY0NfBxv2wo8_ebWwMDi_JWWs79Fd_OSar-7vl7JHNFw9Ps-mcOaH1nhW61XoixcRxoVtR1bwUvGo0F7US0nnrAGzlPIeCF0I5oepG6qoBK1xd-IkcE37861KPmHxr3lPY2fRpOJiDEXM0YrIRczBiVGbEkcHcjWufzLYfUswz_4F-ATyTY8I</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Morchio, Giovanni</creator><creator>Strocchi, Franco</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081201</creationdate><title>The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics</title><author>Morchio, Giovanni ; Strocchi, Franco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Complex Systems</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morchio, Giovanni</creatorcontrib><creatorcontrib>Strocchi, Franco</creatorcontrib><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morchio, Giovanni</au><au>Strocchi, Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>86</volume><issue>2-3</issue><spage>135</spage><epage>150</epage><pages>135-150</pages><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>The Lie–Rinehart algebra of a (connected) manifold
, defined by the Lie structure of the vector fields, their action and their module structure over
, is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra
, with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact
)
which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to
Z
=
i
z
,
z
= 0 and
, respectively; canonical quantization uniquely follows from such a general geometrical structure. For
, the regular factorial Hilbert space representations of
describe quantum mechanics on
. For
z
= 0, if Diff(
) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-008-0280-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-9017 |
ispartof | Letters in mathematical physics, 2008-12, Vol.86 (2-3), p.135-150 |
issn | 0377-9017 1573-0530 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11005_008_0280_5 |
source | Springer Nature |
subjects | Complex Systems Geometry Group Theory and Generalizations Mathematical and Computational Physics Physics Physics and Astronomy Theoretical |
title | The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lie%E2%80%93Rinehart%20Universal%20Poisson%20Algebra%20of%20Classical%20and%20Quantum%20Mechanics&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Morchio,%20Giovanni&rft.date=2008-12-01&rft.volume=86&rft.issue=2-3&rft.spage=135&rft.epage=150&rft.pages=135-150&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-008-0280-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s11005_008_0280_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |