Loading…

The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics

The Lie–Rinehart algebra of a (connected) manifold , defined by the Lie structure of the vector fields, their action and their module structure over , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra ,...

Full description

Saved in:
Bibliographic Details
Published in:Letters in mathematical physics 2008-12, Vol.86 (2-3), p.135-150
Main Authors: Morchio, Giovanni, Strocchi, Franco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43
cites cdi_FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43
container_end_page 150
container_issue 2-3
container_start_page 135
container_title Letters in mathematical physics
container_volume 86
creator Morchio, Giovanni
Strocchi, Franco
description The Lie–Rinehart algebra of a (connected) manifold , defined by the Lie structure of the vector fields, their action and their module structure over , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ) which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z , z  =  0 and , respectively; canonical quantization uniquely follows from such a general geometrical structure. For , the regular factorial Hilbert space representations of describe quantum mechanics on . For z  =  0, if Diff( ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on .
doi_str_mv 10.1007/s11005-008-0280-5
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11005_008_0280_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11005_008_0280_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHa-gGFs14mzrCr-pKICateW4zitq9RBngaJHXfghpwEV2XN6i3mfaOnj5BrDjccoLxFnkMxAM1AaGDqhIy4KiUDJeGUjECWJauAl-fkAnELmREKRmSx3Hg6D_7n6_stRL-xaU9XMXz4hLajL31A7COddmtfJ0v7ls46ixhcPtrY0NfBxv2wo8_ebWwMDi_JWWs79Fd_OSar-7vl7JHNFw9Ps-mcOaH1nhW61XoixcRxoVtR1bwUvGo0F7US0nnrAGzlPIeCF0I5oepG6qoBK1xd-IkcE37861KPmHxr3lPY2fRpOJiDEXM0YrIRczBiVGbEkcHcjWufzLYfUswz_4F-ATyTY8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics</title><source>Springer Nature</source><creator>Morchio, Giovanni ; Strocchi, Franco</creator><creatorcontrib>Morchio, Giovanni ; Strocchi, Franco</creatorcontrib><description>The Lie–Rinehart algebra of a (connected) manifold , defined by the Lie structure of the vector fields, their action and their module structure over , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ) which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z , z  =  0 and , respectively; canonical quantization uniquely follows from such a general geometrical structure. For , the regular factorial Hilbert space representations of describe quantum mechanics on . For z  =  0, if Diff( ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on .</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-008-0280-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Complex Systems ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Letters in mathematical physics, 2008-12, Vol.86 (2-3), p.135-150</ispartof><rights>Springer 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43</citedby><cites>FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Morchio, Giovanni</creatorcontrib><creatorcontrib>Strocchi, Franco</creatorcontrib><title>The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>The Lie–Rinehart algebra of a (connected) manifold , defined by the Lie structure of the vector fields, their action and their module structure over , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ) which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z , z  =  0 and , respectively; canonical quantization uniquely follows from such a general geometrical structure. For , the regular factorial Hilbert space representations of describe quantum mechanics on . For z  =  0, if Diff( ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on .</description><subject>Complex Systems</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHa-gGFs14mzrCr-pKICateW4zitq9RBngaJHXfghpwEV2XN6i3mfaOnj5BrDjccoLxFnkMxAM1AaGDqhIy4KiUDJeGUjECWJauAl-fkAnELmREKRmSx3Hg6D_7n6_stRL-xaU9XMXz4hLajL31A7COddmtfJ0v7ls46ixhcPtrY0NfBxv2wo8_ebWwMDi_JWWs79Fd_OSar-7vl7JHNFw9Ps-mcOaH1nhW61XoixcRxoVtR1bwUvGo0F7US0nnrAGzlPIeCF0I5oepG6qoBK1xd-IkcE37861KPmHxr3lPY2fRpOJiDEXM0YrIRczBiVGbEkcHcjWufzLYfUswz_4F-ATyTY8I</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Morchio, Giovanni</creator><creator>Strocchi, Franco</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081201</creationdate><title>The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics</title><author>Morchio, Giovanni ; Strocchi, Franco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Complex Systems</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morchio, Giovanni</creatorcontrib><creatorcontrib>Strocchi, Franco</creatorcontrib><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morchio, Giovanni</au><au>Strocchi, Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>86</volume><issue>2-3</issue><spage>135</spage><epage>150</epage><pages>135-150</pages><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>The Lie–Rinehart algebra of a (connected) manifold , defined by the Lie structure of the vector fields, their action and their module structure over , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ) which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z , z  =  0 and , respectively; canonical quantization uniquely follows from such a general geometrical structure. For , the regular factorial Hilbert space representations of describe quantum mechanics on . For z  =  0, if Diff( ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-008-0280-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-9017
ispartof Letters in mathematical physics, 2008-12, Vol.86 (2-3), p.135-150
issn 0377-9017
1573-0530
language eng
recordid cdi_crossref_primary_10_1007_s11005_008_0280_5
source Springer Nature
subjects Complex Systems
Geometry
Group Theory and Generalizations
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
title The Lie–Rinehart Universal Poisson Algebra of Classical and Quantum Mechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lie%E2%80%93Rinehart%20Universal%20Poisson%20Algebra%20of%20Classical%20and%20Quantum%20Mechanics&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Morchio,%20Giovanni&rft.date=2008-12-01&rft.volume=86&rft.issue=2-3&rft.spage=135&rft.epage=150&rft.pages=135-150&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-008-0280-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s11005_008_0280_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-68f884324c128f29b17219d812b523ceac00a9ce1061625c25bd389d0a2cb6e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true