Loading…
DLR–KMS correspondence on lattice spin systems
The Dobrushin–Lanford–Ruelle condition (Dobrushin in Theory Prob Appl 17:582–600, 1970. https://doi.org/10.1137/1115049 ; Lanford and Ruelle in Commun Math Phys 13:194–215, 1969. https://doi.org/10.1007/BF01645487 ) and the classical Kubo–Martin–Schwinger (KMS) condition (Gallavotti and Verboven in...
Saved in:
Published in: | Letters in mathematical physics 2023-07, Vol.113 (4), Article 88 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-824bef81c28e5a62fbc463816ee054d3e31c3e20afa6bf2e0bd82acdf9733033 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-824bef81c28e5a62fbc463816ee054d3e31c3e20afa6bf2e0bd82acdf9733033 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Letters in mathematical physics |
container_volume | 113 |
creator | Drago, N. van de Ven, C. J. F. |
description | The Dobrushin–Lanford–Ruelle condition (Dobrushin in Theory Prob Appl 17:582–600, 1970.
https://doi.org/10.1137/1115049
; Lanford and Ruelle in Commun Math Phys 13:194–215, 1969.
https://doi.org/10.1007/BF01645487
) and the classical Kubo–Martin–Schwinger (KMS) condition (Gallavotti and Verboven in Nuov Cim B 28:274–286, 1975.
https://doi.org/10.1007/BF02722820
) are considered in the context of classical lattice systems. In particular, we prove that these conditions are equivalent for the case of a lattice spin system with values in a compact symplectic manifold by showing that infinite-volume Gibbs states are in bijection with KMS states. |
doi_str_mv | 10.1007/s11005-023-01710-x |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11005_023_01710_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11005_023_01710_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-824bef81c28e5a62fbc463816ee054d3e31c3e20afa6bf2e0bd82acdf9733033</originalsourceid><addsrcrecordid>eNp9j01OwzAQRi0EEqVwAVa5gGHsiZOwROVXBCFB95bjjFGq1onsILU77sANOQmGsGDF6vtGmjeax9ipgDMBUJ5HkUJxkMhBlAL4do_NhCrTqBD2__RDdhTjChIkFcwYXNXPn-8fD48vme1DoDj0viVvKet9tjbj2KUah85ncRdH2sRjduDMOtLJb87Z8uZ6ubjj9dPt_eKy5hZRjbySeUOuElZWpEwhXWPzAitREIHKWyQUFkmCcaZonCRo2koa27qLEhEQ50xOZ23oYwzk9BC6jQk7LUB_K-tJWSdl_aOstwnCCYpp2b9S0Kv-Lfj05n_UFzhwWrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DLR–KMS correspondence on lattice spin systems</title><source>Springer Link</source><creator>Drago, N. ; van de Ven, C. J. F.</creator><creatorcontrib>Drago, N. ; van de Ven, C. J. F.</creatorcontrib><description>The Dobrushin–Lanford–Ruelle condition (Dobrushin in Theory Prob Appl 17:582–600, 1970.
https://doi.org/10.1137/1115049
; Lanford and Ruelle in Commun Math Phys 13:194–215, 1969.
https://doi.org/10.1007/BF01645487
) and the classical Kubo–Martin–Schwinger (KMS) condition (Gallavotti and Verboven in Nuov Cim B 28:274–286, 1975.
https://doi.org/10.1007/BF02722820
) are considered in the context of classical lattice systems. In particular, we prove that these conditions are equivalent for the case of a lattice spin system with values in a compact symplectic manifold by showing that infinite-volume Gibbs states are in bijection with KMS states.</description><identifier>ISSN: 1573-0530</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-023-01710-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Complex Systems ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Letters in mathematical physics, 2023-07, Vol.113 (4), Article 88</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-824bef81c28e5a62fbc463816ee054d3e31c3e20afa6bf2e0bd82acdf9733033</citedby><cites>FETCH-LOGICAL-c335t-824bef81c28e5a62fbc463816ee054d3e31c3e20afa6bf2e0bd82acdf9733033</cites><orcidid>0000-0002-6363-7012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Drago, N.</creatorcontrib><creatorcontrib>van de Ven, C. J. F.</creatorcontrib><title>DLR–KMS correspondence on lattice spin systems</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>The Dobrushin–Lanford–Ruelle condition (Dobrushin in Theory Prob Appl 17:582–600, 1970.
https://doi.org/10.1137/1115049
; Lanford and Ruelle in Commun Math Phys 13:194–215, 1969.
https://doi.org/10.1007/BF01645487
) and the classical Kubo–Martin–Schwinger (KMS) condition (Gallavotti and Verboven in Nuov Cim B 28:274–286, 1975.
https://doi.org/10.1007/BF02722820
) are considered in the context of classical lattice systems. In particular, we prove that these conditions are equivalent for the case of a lattice spin system with values in a compact symplectic manifold by showing that infinite-volume Gibbs states are in bijection with KMS states.</description><subject>Complex Systems</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1573-0530</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j01OwzAQRi0EEqVwAVa5gGHsiZOwROVXBCFB95bjjFGq1onsILU77sANOQmGsGDF6vtGmjeax9ipgDMBUJ5HkUJxkMhBlAL4do_NhCrTqBD2__RDdhTjChIkFcwYXNXPn-8fD48vme1DoDj0viVvKet9tjbj2KUah85ncRdH2sRjduDMOtLJb87Z8uZ6ubjj9dPt_eKy5hZRjbySeUOuElZWpEwhXWPzAitREIHKWyQUFkmCcaZonCRo2koa27qLEhEQ50xOZ23oYwzk9BC6jQk7LUB_K-tJWSdl_aOstwnCCYpp2b9S0Kv-Lfj05n_UFzhwWrI</recordid><startdate>20230730</startdate><enddate>20230730</enddate><creator>Drago, N.</creator><creator>van de Ven, C. J. F.</creator><general>Springer Netherlands</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6363-7012</orcidid></search><sort><creationdate>20230730</creationdate><title>DLR–KMS correspondence on lattice spin systems</title><author>Drago, N. ; van de Ven, C. J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-824bef81c28e5a62fbc463816ee054d3e31c3e20afa6bf2e0bd82acdf9733033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Complex Systems</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drago, N.</creatorcontrib><creatorcontrib>van de Ven, C. J. F.</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drago, N.</au><au>van de Ven, C. J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DLR–KMS correspondence on lattice spin systems</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2023-07-30</date><risdate>2023</risdate><volume>113</volume><issue>4</issue><artnum>88</artnum><issn>1573-0530</issn><eissn>1573-0530</eissn><abstract>The Dobrushin–Lanford–Ruelle condition (Dobrushin in Theory Prob Appl 17:582–600, 1970.
https://doi.org/10.1137/1115049
; Lanford and Ruelle in Commun Math Phys 13:194–215, 1969.
https://doi.org/10.1007/BF01645487
) and the classical Kubo–Martin–Schwinger (KMS) condition (Gallavotti and Verboven in Nuov Cim B 28:274–286, 1975.
https://doi.org/10.1007/BF02722820
) are considered in the context of classical lattice systems. In particular, we prove that these conditions are equivalent for the case of a lattice spin system with values in a compact symplectic manifold by showing that infinite-volume Gibbs states are in bijection with KMS states.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-023-01710-x</doi><orcidid>https://orcid.org/0000-0002-6363-7012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-0530 |
ispartof | Letters in mathematical physics, 2023-07, Vol.113 (4), Article 88 |
issn | 1573-0530 1573-0530 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11005_023_01710_x |
source | Springer Link |
subjects | Complex Systems Geometry Group Theory and Generalizations Mathematical and Computational Physics Physics Physics and Astronomy Theoretical |
title | DLR–KMS correspondence on lattice spin systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DLR%E2%80%93KMS%20correspondence%20on%20lattice%20spin%20systems&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Drago,%20N.&rft.date=2023-07-30&rft.volume=113&rft.issue=4&rft.artnum=88&rft.issn=1573-0530&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-023-01710-x&rft_dat=%3Ccrossref_sprin%3E10_1007_s11005_023_01710_x%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-824bef81c28e5a62fbc463816ee054d3e31c3e20afa6bf2e0bd82acdf9733033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |