Loading…

Emotional quantification of soundscapes by learning between samples

Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valen...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2020-11, Vol.79 (41-42), p.30387-30395
Main Author: Ntalampiras, Stavros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23
cites cdi_FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23
container_end_page 30395
container_issue 41-42
container_start_page 30387
container_title Multimedia tools and applications
container_volume 79
creator Ntalampiras, Stavros
description Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.
doi_str_mv 10.1007/s11042-020-09430-3
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11042_020_09430_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11042_020_09430_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23</originalsourceid><addsrcrecordid>eNp9kM9OwzAMhyMEEmPwApzyAgE7aZbliKbxR5rEBc6Rm7pTpy4dTSu0t6djnLnY1k_-LPkT4h7hAQHcY0aEQivQoMAXBpS5EDO0zijnNF5Os1mCchbwWtzkvAPAhdXFTKzW-25oukSt_BopDU3dRDoFsqtl7sZU5UgHzrI8ypapT03aypKHb-YkM-0PLedbcVVTm_nur8_F5_P6Y_WqNu8vb6unjYrG2EHFCsibRTlVdFSWFJdeO2dtZG-4shzjgis2hETRANeI1luP3hbMRdRmLvT5buy7nHuuw6Fv9tQfA0I4aQhnDWHSEH41BDNB5gzlaTltuQ-7buynf_N_1A8ACWHR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Emotional quantification of soundscapes by learning between samples</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ntalampiras, Stavros</creator><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><description>Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09430-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-11, Vol.79 (41-42), p.30387-30395</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23</citedby><cites>FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23</cites><orcidid>0000-0003-3482-9215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><title>Emotional quantification of soundscapes by learning between samples</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMhyMEEmPwApzyAgE7aZbliKbxR5rEBc6Rm7pTpy4dTSu0t6djnLnY1k_-LPkT4h7hAQHcY0aEQivQoMAXBpS5EDO0zijnNF5Os1mCchbwWtzkvAPAhdXFTKzW-25oukSt_BopDU3dRDoFsqtl7sZU5UgHzrI8ypapT03aypKHb-YkM-0PLedbcVVTm_nur8_F5_P6Y_WqNu8vb6unjYrG2EHFCsibRTlVdFSWFJdeO2dtZG-4shzjgis2hETRANeI1luP3hbMRdRmLvT5buy7nHuuw6Fv9tQfA0I4aQhnDWHSEH41BDNB5gzlaTltuQ-7buynf_N_1A8ACWHR</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ntalampiras, Stavros</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3482-9215</orcidid></search><sort><creationdate>20201101</creationdate><title>Emotional quantification of soundscapes by learning between samples</title><author>Ntalampiras, Stavros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntalampiras, Stavros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotional quantification of soundscapes by learning between samples</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>79</volume><issue>41-42</issue><spage>30387</spage><epage>30395</epage><pages>30387-30395</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09430-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3482-9215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-11, Vol.79 (41-42), p.30387-30395
issn 1380-7501
1573-7721
language eng
recordid cdi_crossref_primary_10_1007_s11042_020_09430_3
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Multimedia Information Systems
Special Purpose and Application-Based Systems
title Emotional quantification of soundscapes by learning between samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotional%20quantification%20of%20soundscapes%20by%20learning%20between%20samples&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Ntalampiras,%20Stavros&rft.date=2020-11-01&rft.volume=79&rft.issue=41-42&rft.spage=30387&rft.epage=30395&rft.pages=30387-30395&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09430-3&rft_dat=%3Ccrossref_sprin%3E10_1007_s11042_020_09430_3%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true