Loading…
Emotional quantification of soundscapes by learning between samples
Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valen...
Saved in:
Published in: | Multimedia tools and applications 2020-11, Vol.79 (41-42), p.30387-30395 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23 |
container_end_page | 30395 |
container_issue | 41-42 |
container_start_page | 30387 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Ntalampiras, Stavros |
description | Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context. |
doi_str_mv | 10.1007/s11042-020-09430-3 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11042_020_09430_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11042_020_09430_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23</originalsourceid><addsrcrecordid>eNp9kM9OwzAMhyMEEmPwApzyAgE7aZbliKbxR5rEBc6Rm7pTpy4dTSu0t6djnLnY1k_-LPkT4h7hAQHcY0aEQivQoMAXBpS5EDO0zijnNF5Os1mCchbwWtzkvAPAhdXFTKzW-25oukSt_BopDU3dRDoFsqtl7sZU5UgHzrI8ypapT03aypKHb-YkM-0PLedbcVVTm_nur8_F5_P6Y_WqNu8vb6unjYrG2EHFCsibRTlVdFSWFJdeO2dtZG-4shzjgis2hETRANeI1luP3hbMRdRmLvT5buy7nHuuw6Fv9tQfA0I4aQhnDWHSEH41BDNB5gzlaTltuQ-7buynf_N_1A8ACWHR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Emotional quantification of soundscapes by learning between samples</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ntalampiras, Stavros</creator><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><description>Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09430-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-11, Vol.79 (41-42), p.30387-30395</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23</citedby><cites>FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23</cites><orcidid>0000-0003-3482-9215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><title>Emotional quantification of soundscapes by learning between samples</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMhyMEEmPwApzyAgE7aZbliKbxR5rEBc6Rm7pTpy4dTSu0t6djnLnY1k_-LPkT4h7hAQHcY0aEQivQoMAXBpS5EDO0zijnNF5Os1mCchbwWtzkvAPAhdXFTKzW-25oukSt_BopDU3dRDoFsqtl7sZU5UgHzrI8ypapT03aypKHb-YkM-0PLedbcVVTm_nur8_F5_P6Y_WqNu8vb6unjYrG2EHFCsibRTlVdFSWFJdeO2dtZG-4shzjgis2hETRANeI1luP3hbMRdRmLvT5buy7nHuuw6Fv9tQfA0I4aQhnDWHSEH41BDNB5gzlaTltuQ-7buynf_N_1A8ACWHR</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ntalampiras, Stavros</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3482-9215</orcidid></search><sort><creationdate>20201101</creationdate><title>Emotional quantification of soundscapes by learning between samples</title><author>Ntalampiras, Stavros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntalampiras, Stavros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotional quantification of soundscapes by learning between samples</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>79</volume><issue>41-42</issue><spage>30387</spage><epage>30395</epage><pages>30387-30395</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09430-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3482-9215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-11, Vol.79 (41-42), p.30387-30395 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11042_020_09430_3 |
source | ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Computer Communication Networks Computer Science Data Structures and Information Theory Multimedia Information Systems Special Purpose and Application-Based Systems |
title | Emotional quantification of soundscapes by learning between samples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotional%20quantification%20of%20soundscapes%20by%20learning%20between%20samples&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Ntalampiras,%20Stavros&rft.date=2020-11-01&rft.volume=79&rft.issue=41-42&rft.spage=30387&rft.epage=30395&rft.pages=30387-30395&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09430-3&rft_dat=%3Ccrossref_sprin%3E10_1007_s11042_020_09430_3%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-cd0a936b0a917abbac8927755ce93ed5ecc6ede3a1aac30ef1159591954ee4c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |