Loading…

Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core

In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which...

Full description

Saved in:
Bibliographic Details
Published in:Optical and quantum electronics 2015, Vol.47 (1), p.77-88
Main Authors: Swat, Michal, Salski, Bartlomiej, Karpisz, Tomasz, Stepniewski, Grzegorz, Kujawa, Ireneusz, Klimczak, Mariusz, Buczynski, Ryszard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3
cites cdi_FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3
container_end_page 88
container_issue 1
container_start_page 77
container_title Optical and quantum electronics
container_volume 47
creator Swat, Michal
Salski, Bartlomiej
Karpisz, Tomasz
Stepniewski, Grzegorz
Kujawa, Ireneusz
Klimczak, Mariusz
Buczynski, Ryszard
description In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of 1.95 × 10 - 3 with variation below 5 % is achieved in 800–2,000 nm bandwidth.
doi_str_mv 10.1007/s11082-014-9984-1
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11082_014_9984_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11082_014_9984_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C4vED0nmUtmKcVLoehGwV3IbdqUaWdIMkjf3mnrWjjwr76f_3yE3CM8IED9mBBBcgZYsKaRBcMLMsOy5kxi_X1JZiCgYrLB5prcpLQFgKooYUbM-7jzMVjdUb3X3SGFRPuWaroJ6013oCZE38awX_t9prtgY59yHG0eo3e0H_KJbIPxkf6EvJlKpgupz7EfgqW2j_6WXLW6S_7uL-fk6-X5c_HGVh-vy8XTilkhMDMtZaWxBCtMISshHQfNrQZda2vKCkXDRemcKbgzHJ3jQnqQzjsrRVlwL-YEz73HkWmarYYYdjoeFII6SlJnSWqSpI6SFE4MPzNpOD0Z1bYf4yQi_QP9AqFJbHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core</title><source>Springer Nature</source><creator>Swat, Michal ; Salski, Bartlomiej ; Karpisz, Tomasz ; Stepniewski, Grzegorz ; Kujawa, Ireneusz ; Klimczak, Mariusz ; Buczynski, Ryszard</creator><creatorcontrib>Swat, Michal ; Salski, Bartlomiej ; Karpisz, Tomasz ; Stepniewski, Grzegorz ; Kujawa, Ireneusz ; Klimczak, Mariusz ; Buczynski, Ryszard</creatorcontrib><description>In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of 1.95 × 10 - 3 with variation below 5 % is achieved in 800–2,000 nm bandwidth.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-014-9984-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optical and quantum electronics, 2015, Vol.47 (1), p.77-88</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3</citedby><cites>FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Swat, Michal</creatorcontrib><creatorcontrib>Salski, Bartlomiej</creatorcontrib><creatorcontrib>Karpisz, Tomasz</creatorcontrib><creatorcontrib>Stepniewski, Grzegorz</creatorcontrib><creatorcontrib>Kujawa, Ireneusz</creatorcontrib><creatorcontrib>Klimczak, Mariusz</creatorcontrib><creatorcontrib>Buczynski, Ryszard</creatorcontrib><title>Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of 1.95 × 10 - 3 with variation below 5 % is achieved in 800–2,000 nm bandwidth.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C4vED0nmUtmKcVLoehGwV3IbdqUaWdIMkjf3mnrWjjwr76f_3yE3CM8IED9mBBBcgZYsKaRBcMLMsOy5kxi_X1JZiCgYrLB5prcpLQFgKooYUbM-7jzMVjdUb3X3SGFRPuWaroJ6013oCZE38awX_t9prtgY59yHG0eo3e0H_KJbIPxkf6EvJlKpgupz7EfgqW2j_6WXLW6S_7uL-fk6-X5c_HGVh-vy8XTilkhMDMtZaWxBCtMISshHQfNrQZda2vKCkXDRemcKbgzHJ3jQnqQzjsrRVlwL-YEz73HkWmarYYYdjoeFII6SlJnSWqSpI6SFE4MPzNpOD0Z1bYf4yQi_QP9AqFJbHk</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Swat, Michal</creator><creator>Salski, Bartlomiej</creator><creator>Karpisz, Tomasz</creator><creator>Stepniewski, Grzegorz</creator><creator>Kujawa, Ireneusz</creator><creator>Klimczak, Mariusz</creator><creator>Buczynski, Ryszard</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core</title><author>Swat, Michal ; Salski, Bartlomiej ; Karpisz, Tomasz ; Stepniewski, Grzegorz ; Kujawa, Ireneusz ; Klimczak, Mariusz ; Buczynski, Ryszard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swat, Michal</creatorcontrib><creatorcontrib>Salski, Bartlomiej</creatorcontrib><creatorcontrib>Karpisz, Tomasz</creatorcontrib><creatorcontrib>Stepniewski, Grzegorz</creatorcontrib><creatorcontrib>Kujawa, Ireneusz</creatorcontrib><creatorcontrib>Klimczak, Mariusz</creatorcontrib><creatorcontrib>Buczynski, Ryszard</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swat, Michal</au><au>Salski, Bartlomiej</au><au>Karpisz, Tomasz</au><au>Stepniewski, Grzegorz</au><au>Kujawa, Ireneusz</au><au>Klimczak, Mariusz</au><au>Buczynski, Ryszard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2015</date><risdate>2015</risdate><volume>47</volume><issue>1</issue><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of 1.95 × 10 - 3 with variation below 5 % is achieved in 800–2,000 nm bandwidth.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11082-014-9984-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2015, Vol.47 (1), p.77-88
issn 0306-8919
1572-817X
language eng
recordid cdi_crossref_primary_10_1007_s11082_014_9984_1
source Springer Nature
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Lasers
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
title Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20a%20highly%20birefringent%20microstructured%20optical%20fiber%20with%20an%20anisotropic%20core&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Swat,%20Michal&rft.date=2015&rft.volume=47&rft.issue=1&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-014-9984-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s11082_014_9984_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true