Loading…
Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core
In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which...
Saved in:
Published in: | Optical and quantum electronics 2015, Vol.47 (1), p.77-88 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3 |
container_end_page | 88 |
container_issue | 1 |
container_start_page | 77 |
container_title | Optical and quantum electronics |
container_volume | 47 |
creator | Swat, Michal Salski, Bartlomiej Karpisz, Tomasz Stepniewski, Grzegorz Kujawa, Ireneusz Klimczak, Mariusz Buczynski, Ryszard |
description | In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of
1.95
×
10
-
3
with variation below 5 % is achieved in 800–2,000 nm bandwidth. |
doi_str_mv | 10.1007/s11082-014-9984-1 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11082_014_9984_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11082_014_9984_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C4vED0nmUtmKcVLoehGwV3IbdqUaWdIMkjf3mnrWjjwr76f_3yE3CM8IED9mBBBcgZYsKaRBcMLMsOy5kxi_X1JZiCgYrLB5prcpLQFgKooYUbM-7jzMVjdUb3X3SGFRPuWaroJ6013oCZE38awX_t9prtgY59yHG0eo3e0H_KJbIPxkf6EvJlKpgupz7EfgqW2j_6WXLW6S_7uL-fk6-X5c_HGVh-vy8XTilkhMDMtZaWxBCtMISshHQfNrQZda2vKCkXDRemcKbgzHJ3jQnqQzjsrRVlwL-YEz73HkWmarYYYdjoeFII6SlJnSWqSpI6SFE4MPzNpOD0Z1bYf4yQi_QP9AqFJbHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core</title><source>Springer Nature</source><creator>Swat, Michal ; Salski, Bartlomiej ; Karpisz, Tomasz ; Stepniewski, Grzegorz ; Kujawa, Ireneusz ; Klimczak, Mariusz ; Buczynski, Ryszard</creator><creatorcontrib>Swat, Michal ; Salski, Bartlomiej ; Karpisz, Tomasz ; Stepniewski, Grzegorz ; Kujawa, Ireneusz ; Klimczak, Mariusz ; Buczynski, Ryszard</creatorcontrib><description>In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of
1.95
×
10
-
3
with variation below 5 % is achieved in 800–2,000 nm bandwidth.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-014-9984-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optical and quantum electronics, 2015, Vol.47 (1), p.77-88</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3</citedby><cites>FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Swat, Michal</creatorcontrib><creatorcontrib>Salski, Bartlomiej</creatorcontrib><creatorcontrib>Karpisz, Tomasz</creatorcontrib><creatorcontrib>Stepniewski, Grzegorz</creatorcontrib><creatorcontrib>Kujawa, Ireneusz</creatorcontrib><creatorcontrib>Klimczak, Mariusz</creatorcontrib><creatorcontrib>Buczynski, Ryszard</creatorcontrib><title>Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of
1.95
×
10
-
3
with variation below 5 % is achieved in 800–2,000 nm bandwidth.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C4vED0nmUtmKcVLoehGwV3IbdqUaWdIMkjf3mnrWjjwr76f_3yE3CM8IED9mBBBcgZYsKaRBcMLMsOy5kxi_X1JZiCgYrLB5prcpLQFgKooYUbM-7jzMVjdUb3X3SGFRPuWaroJ6013oCZE38awX_t9prtgY59yHG0eo3e0H_KJbIPxkf6EvJlKpgupz7EfgqW2j_6WXLW6S_7uL-fk6-X5c_HGVh-vy8XTilkhMDMtZaWxBCtMISshHQfNrQZda2vKCkXDRemcKbgzHJ3jQnqQzjsrRVlwL-YEz73HkWmarYYYdjoeFII6SlJnSWqSpI6SFE4MPzNpOD0Z1bYf4yQi_QP9AqFJbHk</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Swat, Michal</creator><creator>Salski, Bartlomiej</creator><creator>Karpisz, Tomasz</creator><creator>Stepniewski, Grzegorz</creator><creator>Kujawa, Ireneusz</creator><creator>Klimczak, Mariusz</creator><creator>Buczynski, Ryszard</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core</title><author>Swat, Michal ; Salski, Bartlomiej ; Karpisz, Tomasz ; Stepniewski, Grzegorz ; Kujawa, Ireneusz ; Klimczak, Mariusz ; Buczynski, Ryszard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swat, Michal</creatorcontrib><creatorcontrib>Salski, Bartlomiej</creatorcontrib><creatorcontrib>Karpisz, Tomasz</creatorcontrib><creatorcontrib>Stepniewski, Grzegorz</creatorcontrib><creatorcontrib>Kujawa, Ireneusz</creatorcontrib><creatorcontrib>Klimczak, Mariusz</creatorcontrib><creatorcontrib>Buczynski, Ryszard</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swat, Michal</au><au>Salski, Bartlomiej</au><au>Karpisz, Tomasz</au><au>Stepniewski, Grzegorz</au><au>Kujawa, Ireneusz</au><au>Klimczak, Mariusz</au><au>Buczynski, Ryszard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2015</date><risdate>2015</risdate><volume>47</volume><issue>1</issue><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of
1.95
×
10
-
3
with variation below 5 % is achieved in 800–2,000 nm bandwidth.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11082-014-9984-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2015, Vol.47 (1), p.77-88 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11082_014_9984_1 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Lasers Optical Devices Optics Photonics Physics Physics and Astronomy |
title | Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20a%20highly%20birefringent%20microstructured%20optical%20fiber%20with%20an%20anisotropic%20core&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Swat,%20Michal&rft.date=2015&rft.volume=47&rft.issue=1&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-014-9984-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s11082_014_9984_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-a886a150c3b48638d20a2ca0a7acb56139235ddb42db21dd238e08dedc83542e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |