Loading…

Double-side processed III-V nanowire waveguide on a silicon substrate

We introduce a III-V nanowire waveguide structure on a silicon substrate through III-V to silicon adhesive bonding technology. The proposed waveguide structure provides an omni-directional high-refractive-index contrast which is similar to the conventional silicon-on-insulator nanowire waveguides. T...

Full description

Saved in:
Bibliographic Details
Published in:Optical and quantum electronics 2015-10, Vol.47 (10), p.3381-3390
Main Authors: Cheng, Jianxin, Zhu, Yuntao, Zhang, Chenzhao, Huang, Qiangsheng, Liu, Liu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a III-V nanowire waveguide structure on a silicon substrate through III-V to silicon adhesive bonding technology. The proposed waveguide structure provides an omni-directional high-refractive-index contrast which is similar to the conventional silicon-on-insulator nanowire waveguides. The optical confinement factor in the active region of the proposed structure nearly doubles that in the conventional hybrid III-V waveguides with a thick p-InP top cladding layer. Electrical injection is also favored in the proposed structure using two thin lateral contact layers which can be fabricated through a double side patterning process. Passive waveguides are fabricated and measured. Propagation losses of 16.18 and 17.83 dB/mm are extracted for the fundamental transverse-electrical and transverse-magnetic modes, respectively, in the proposed III-V nanowire waveguide of 600 nm width.
ISSN:0306-8919
1572-817X
DOI:10.1007/s11082-015-0214-2