Loading…
Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth
We establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound alread...
Saved in:
Published in: | Potential analysis 2024-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c172t-231a6cf807b725d0f24963b0e02a8885ddaa1ed41ecb75158fe5dd2f676c5a103 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Potential analysis |
container_volume | |
creator | Eleuteri, Michela Passarelli di Napoli, Antonia |
description | We establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound already found in [16]. |
doi_str_mv | 10.1007/s11118-024-10146-4 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11118_024_10146_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11118_024_10146_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-231a6cf807b725d0f24963b0e02a8885ddaa1ed41ecb75158fe5dd2f676c5a103</originalsourceid><addsrcrecordid>eNot0MtKAzEUBuAgCtbqC7jKC0RPMjNJZqnFXqBeEAV3Ic2ljbSTkqSU9ukdrWfzw_nhX3wI3VK4owDiPtP-JAFWEwq05qQ-QwPaCEZa1n6dowG0jBPGgV6iq5y_AYAJIQfIzsM2m1UoR_zulru1TqEcsI8Ja_yWQkwBP8ZdZ53Fz6ELm3B0KePo8awrbpn0Go93nSkhdnqd8T6UFX6JXS66szpZPElxX1bX6ML3tbv5zyH6HD99jKZk_jqZjR7mxFDBCmEV1dx4CWIhWGPBs7rl1QIcMC2lbKzVmjpbU2cWoqGN9K7_Mc8FN42mUA0RO-2aFHNOzqttChudDoqC-nVSJyfVO6k_J1VXP6HTXVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth</title><source>Springer Link</source><creator>Eleuteri, Michela ; Passarelli di Napoli, Antonia</creator><creatorcontrib>Eleuteri, Michela ; Passarelli di Napoli, Antonia</creatorcontrib><description>We establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound already found in [16].</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-024-10146-4</identifier><language>eng</language><ispartof>Potential analysis, 2024-05</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-231a6cf807b725d0f24963b0e02a8885ddaa1ed41ecb75158fe5dd2f676c5a103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eleuteri, Michela</creatorcontrib><creatorcontrib>Passarelli di Napoli, Antonia</creatorcontrib><title>Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth</title><title>Potential analysis</title><description>We establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound already found in [16].</description><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0MtKAzEUBuAgCtbqC7jKC0RPMjNJZqnFXqBeEAV3Ic2ljbSTkqSU9ukdrWfzw_nhX3wI3VK4owDiPtP-JAFWEwq05qQ-QwPaCEZa1n6dowG0jBPGgV6iq5y_AYAJIQfIzsM2m1UoR_zulru1TqEcsI8Ja_yWQkwBP8ZdZ53Fz6ELm3B0KePo8awrbpn0Go93nSkhdnqd8T6UFX6JXS66szpZPElxX1bX6ML3tbv5zyH6HD99jKZk_jqZjR7mxFDBCmEV1dx4CWIhWGPBs7rl1QIcMC2lbKzVmjpbU2cWoqGN9K7_Mc8FN42mUA0RO-2aFHNOzqttChudDoqC-nVSJyfVO6k_J1VXP6HTXVA</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Eleuteri, Michela</creator><creator>Passarelli di Napoli, Antonia</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240528</creationdate><title>Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth</title><author>Eleuteri, Michela ; Passarelli di Napoli, Antonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-231a6cf807b725d0f24963b0e02a8885ddaa1ed41ecb75158fe5dd2f676c5a103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eleuteri, Michela</creatorcontrib><creatorcontrib>Passarelli di Napoli, Antonia</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eleuteri, Michela</au><au>Passarelli di Napoli, Antonia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth</atitle><jtitle>Potential analysis</jtitle><date>2024-05-28</date><risdate>2024</risdate><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>We establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound already found in [16].</abstract><doi>10.1007/s11118-024-10146-4</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2601 |
ispartof | Potential analysis, 2024-05 |
issn | 0926-2601 1572-929X |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11118_024_10146_4 |
source | Springer Link |
title | Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz%20Regularity%20for%20a%20Priori%20Bounded%20Minimizers%20of%20Integral%20Functionals%20with%20Nonstandard%20Growth&rft.jtitle=Potential%20analysis&rft.au=Eleuteri,%20Michela&rft.date=2024-05-28&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-024-10146-4&rft_dat=%3Ccrossref%3E10_1007_s11118_024_10146_4%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-231a6cf807b725d0f24963b0e02a8885ddaa1ed41ecb75158fe5dd2f676c5a103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |