Loading…
Optical manipulation of quantum optic entanglement using graphene clad surface plasmonic polariton device
Here, graphene clad-based two surface plasmonic polariton modes interference (GTSPPMI) coupler is presented to get optically manipulated quantum interference. The Hong–Ou–Mandel depth varying with optical pulse energy is established theoretically using nano-scale two modes coupling. The fidelity of...
Saved in:
Published in: | Quantum information processing 2023-06, Vol.22 (6), Article 248 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, graphene clad-based two surface plasmonic polariton modes interference (GTSPPMI) coupler is presented to get optically manipulated quantum interference. The Hong–Ou–Mandel depth varying with optical pulse energy is established theoretically using nano-scale two modes coupling. The fidelity of quantum entanglement is tuned by varying incident optical pulse energy and highest quantum fidelity is obtained as ~ 97.5% with optical pulse of energy 5.12 pJ and width 3.8 ps in graphene cladding. Our results promise to obtain optical reconfiguration of quantum plasmonics circuit in more compact and faster way than that with electrooptic and thermooptic way and high fabrication tolerance making its use in large-scale integrated quantum optic device. |
---|---|
ISSN: | 1573-1332 1573-1332 |
DOI: | 10.1007/s11128-023-04006-0 |