Loading…

Pandemic data quality modelling: a Bayesian approach in the Italian case

When pandemics like COVID-19 spread around the world, the rapidly evolving situation compels officials and executives to take prompt decisions and adapt policies depending on the current state of the disease. In this context, it is crucial for policymakers to always have a firm grasp on what is the...

Full description

Saved in:
Bibliographic Details
Published in:Quality & quantity 2024-07
Main Authors: Ferrari, Luisa, Manzi, Giancarlo, Micheletti, Alessandra, Nicolussi, Federica, Salini, Silvia
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When pandemics like COVID-19 spread around the world, the rapidly evolving situation compels officials and executives to take prompt decisions and adapt policies depending on the current state of the disease. In this context, it is crucial for policymakers to always have a firm grasp on what is the current state of the pandemic, and envision how the number of infections and possible deaths is going to evolve shortly. However, as in many other situations involving compulsory registration of sensitive data from multiple collectors, cases might be reported with errors, often with delays deferring an up-to-date view of the state of things. Errors in collecting new cases affect the overall mortality, resulting in excess deaths reported by official statistics only months later. In this paper, we provide tools for evaluating the quality of pandemic mortality data. We accomplish this through a Bayesian approach accounting for the excess mortality pandemics might bring with respect to the normal level of mortality in the population.
ISSN:0033-5177
1573-7845
DOI:10.1007/s11135-024-01913-x