Loading…
Research in the Field of Preparing Molded and Unmolded Refractories Based on High-Alumina HCBS. Part 13. Effect of Firing Temperature on Phase Composition, Structure, and Some Properties of Materials Based on Composite Composition HCBS (Bauxite, Electrocorundum, Quartz Glass)1
The effect of firing temperature in the range 800 – 1640°C on the change in phase composition, structure, and some properties of specimen materials prepared on the basis of composite composition HCBS is studied. Four temperature ranges are stablished by a dilatometric method with a nonisothermal hea...
Saved in:
Published in: | Refractories and industrial ceramics 2018-03, Vol.58 (6), p.652-659 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of firing temperature in the range 800 – 1640°C on the change in phase composition, structure, and some properties of specimen materials prepared on the basis of composite composition HCBS is studied. Four temperature ranges are stablished by a dilatometric method with a nonisothermal heating rate of 300°C/h corresponding to normal thermal expansion (up to 800°C), sintering accompanied by shrinkage (800 – 1150°C), mullitization accompanied by growth (1150 – 1400°), and sintering of mullitized material (1400 – 1500°C). A set of methods is used (XPA, dilatometric analysis, optical, and electron microscopy) to specify the phase composition and material structure in the firing temperature ranges noted. After firing at 1400 – 1640°C the material contains 38 – 42% mullite, 50 – 55% corundum, and balance glass phase and titanium compounds. |
---|---|
ISSN: | 1083-4877 1573-9139 |
DOI: | 10.1007/s11148-018-0163-y |