Loading…

The strontium-vapor laser pumping efficiency under running-wave excitation

The effect of the design features of the gas-discharge tube on the processes proceeding in the discharge circuit of a metal-vapor laser has been investigated. The position of electrodes in the gas-discharge tube has been found to significantly affect the processes at work in the discharge circuit an...

Full description

Saved in:
Bibliographic Details
Published in:Russian physics journal 2008-12, Vol.51 (12), p.1334-1343
Main Authors: Soldatov, A. N., Yudin, N. A., Vasilieva, A. V., Polunin, Yu. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of the design features of the gas-discharge tube on the processes proceeding in the discharge circuit of a metal-vapor laser has been investigated. The position of electrodes in the gas-discharge tube has been found to significantly affect the processes at work in the discharge circuit and the energy characteristics of the laser. For instance, gas-discharge tubes with electrodes placed in the hot region of the discharge channel are typified by high metastable-population rates at the leading edge of the excitation pulse, whereas with electrodes positioned in cold buffer regions, the leading edge of the voltage pulse across the resistive component of the tube impedance is seen to peak. Conditions for running-wave generation in the active media of lasers on self-terminated transitions of metal atoms and the running-wave use efficiency for laser pumping are discussed, considering a strontium-vapor laser as an illustration. It is shown that the running wave is generated as the result of the breakdown in the anode end of the gas-discharge tube and is maintained by the energy stored in the capacitive component of the impedance of the gas-discharge tube. The lasing pulse duration under running-wave excitation corresponds to the time it takes an ionization wave to propagate from the anode to the cathode of the gas-discharge tube, with pumping efficiency being ~6–8% for a strontium-vapor laser. The average lasing power varies within 10–15% depending on whether the totally reflecting cavity mirror is placed near the anode or the cathode of the tube.
ISSN:1064-8887
1573-9228
DOI:10.1007/s11182-009-9186-7