Loading…
Uniform Interpolation and Propositional Quantifiers in Modal Logics
We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view. Our approach is adopted from Pitts' proof of uniform interpolation in intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over prop...
Saved in:
Published in: | Studia logica 2007-02, Vol.85 (1), p.1-31 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c248t-302ec01fa262964eae37ca200bf4b953938a27aaab06f02b44aa32c1a171c9ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c248t-302ec01fa262964eae37ca200bf4b953938a27aaab06f02b44aa32c1a171c9ac3 |
container_end_page | 31 |
container_issue | 1 |
container_start_page | 1 |
container_title | Studia logica |
container_volume | 85 |
creator | Bílková, Marta |
description | We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view. Our approach is adopted from Pitts' proof of uniform interpolation in intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over propositional variables and uses a terminating sequent calculus for which structural rules are admissible. We shall present such a proof of the uniform interpolation theorem for normal modal logics K and T. It provides an explicit algorithm constructing the interpolants. |
doi_str_mv | 10.1007/s11225-007-9021-5 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11225_007_9021_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40210757</jstor_id><sourcerecordid>40210757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-302ec01fa262964eae37ca200bf4b953938a27aaab06f02b44aa32c1a171c9ac3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_wIOwfyA6M9lsmqMUv6Cigj0vs2kiKe2mJOvBf-8uFU_zzjs8c3iEuEa4RQBzVxCJtByjtEAo9YmYoTYkF0bBqZgBKCsVoT4XF6VsAYAaa2diue5jSHlfvfSDz4e04yGmvuJ-U73ndEglTjvvqo9v7ocYos-lin31mjZjuUpf0ZVLcRZ4V_zV35yL9ePD5_JZrt6eXpb3K-moXgxSAXkHGJgask3t2SvjmAC6UHdWK6sWTIaZO2gCUFfXzIocMhp0lp2aCzz-dTmVkn1oDznuOf-0CO1koT1aaKc4WWj1yNwcmW0ZUv4H6vEKRhv1C3nQWf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Interpolation and Propositional Quantifiers in Modal Logics</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature</source><creator>Bílková, Marta</creator><creatorcontrib>Bílková, Marta</creatorcontrib><description>We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view. Our approach is adopted from Pitts' proof of uniform interpolation in intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over propositional variables and uses a terminating sequent calculus for which structural rules are admissible. We shall present such a proof of the uniform interpolation theorem for normal modal logics K and T. It provides an explicit algorithm constructing the interpolants.</description><identifier>ISSN: 0039-3215</identifier><identifier>EISSN: 1572-8730</identifier><identifier>DOI: 10.1007/s11225-007-9021-5</identifier><language>eng</language><publisher>Springer</publisher><subject>Induction assumption ; Inference ; Interpolation ; Invertibility ; Logical proofs ; Logical theorems ; Modal logic ; Multisets ; Sequent calculus ; Sequents</subject><ispartof>Studia logica, 2007-02, Vol.85 (1), p.1-31</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-302ec01fa262964eae37ca200bf4b953938a27aaab06f02b44aa32c1a171c9ac3</citedby><cites>FETCH-LOGICAL-c248t-302ec01fa262964eae37ca200bf4b953938a27aaab06f02b44aa32c1a171c9ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40210757$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40210757$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Bílková, Marta</creatorcontrib><title>Uniform Interpolation and Propositional Quantifiers in Modal Logics</title><title>Studia logica</title><description>We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view. Our approach is adopted from Pitts' proof of uniform interpolation in intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over propositional variables and uses a terminating sequent calculus for which structural rules are admissible. We shall present such a proof of the uniform interpolation theorem for normal modal logics K and T. It provides an explicit algorithm constructing the interpolants.</description><subject>Induction assumption</subject><subject>Inference</subject><subject>Interpolation</subject><subject>Invertibility</subject><subject>Logical proofs</subject><subject>Logical theorems</subject><subject>Modal logic</subject><subject>Multisets</subject><subject>Sequent calculus</subject><subject>Sequents</subject><issn>0039-3215</issn><issn>1572-8730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_wIOwfyA6M9lsmqMUv6Cigj0vs2kiKe2mJOvBf-8uFU_zzjs8c3iEuEa4RQBzVxCJtByjtEAo9YmYoTYkF0bBqZgBKCsVoT4XF6VsAYAaa2diue5jSHlfvfSDz4e04yGmvuJ-U73ndEglTjvvqo9v7ocYos-lin31mjZjuUpf0ZVLcRZ4V_zV35yL9ePD5_JZrt6eXpb3K-moXgxSAXkHGJgask3t2SvjmAC6UHdWK6sWTIaZO2gCUFfXzIocMhp0lp2aCzz-dTmVkn1oDznuOf-0CO1koT1aaKc4WWj1yNwcmW0ZUv4H6vEKRhv1C3nQWf8</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Bílková, Marta</creator><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200702</creationdate><title>Uniform Interpolation and Propositional Quantifiers in Modal Logics</title><author>Bílková, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-302ec01fa262964eae37ca200bf4b953938a27aaab06f02b44aa32c1a171c9ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Induction assumption</topic><topic>Inference</topic><topic>Interpolation</topic><topic>Invertibility</topic><topic>Logical proofs</topic><topic>Logical theorems</topic><topic>Modal logic</topic><topic>Multisets</topic><topic>Sequent calculus</topic><topic>Sequents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bílková, Marta</creatorcontrib><collection>CrossRef</collection><jtitle>Studia logica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bílková, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Interpolation and Propositional Quantifiers in Modal Logics</atitle><jtitle>Studia logica</jtitle><date>2007-02</date><risdate>2007</risdate><volume>85</volume><issue>1</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>0039-3215</issn><eissn>1572-8730</eissn><abstract>We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view. Our approach is adopted from Pitts' proof of uniform interpolation in intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over propositional variables and uses a terminating sequent calculus for which structural rules are admissible. We shall present such a proof of the uniform interpolation theorem for normal modal logics K and T. It provides an explicit algorithm constructing the interpolants.</abstract><pub>Springer</pub><doi>10.1007/s11225-007-9021-5</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-3215 |
ispartof | Studia logica, 2007-02, Vol.85 (1), p.1-31 |
issn | 0039-3215 1572-8730 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11225_007_9021_5 |
source | JSTOR Archival Journals and Primary Sources Collection; Springer Nature |
subjects | Induction assumption Inference Interpolation Invertibility Logical proofs Logical theorems Modal logic Multisets Sequent calculus Sequents |
title | Uniform Interpolation and Propositional Quantifiers in Modal Logics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Interpolation%20and%20Propositional%20Quantifiers%20in%20Modal%20Logics&rft.jtitle=Studia%20logica&rft.au=B%C3%ADlkov%C3%A1,%20Marta&rft.date=2007-02&rft.volume=85&rft.issue=1&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=0039-3215&rft.eissn=1572-8730&rft_id=info:doi/10.1007/s11225-007-9021-5&rft_dat=%3Cjstor_cross%3E40210757%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c248t-302ec01fa262964eae37ca200bf4b953938a27aaab06f02b44aa32c1a171c9ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=40210757&rfr_iscdi=true |