Loading…

An Algebraic Study of S5-Modal Gödel Logic

In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally fini...

Full description

Saved in:
Bibliographic Details
Published in:Studia logica 2021-10, Vol.109 (5), p.937-967
Main Authors: Castaño, Diego, Cimadamore, Cecilia, Varela, José P. Díaz, Rueda, Laura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3
container_end_page 967
container_issue 5
container_start_page 937
container_title Studia logica
container_volume 109
creator Castaño, Diego
Cimadamore, Cecilia
Varela, José P. Díaz
Rueda, Laura
description In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators.
doi_str_mv 10.1007/s11225-020-09934-x
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11225_020_09934_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45395871</jstor_id><sourcerecordid>45395871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3</originalsourceid><addsrcrecordid>eNp9jzFOAzEQRS0EEiFwAaptqJBhPF5ndsoogoAURBGoLWdtR4mWLLITKbkYF-BiLCwFFdUUM2_-f0JcKrhRAHSblUI0EhAkMOtS7o_EQBlCWZGGYzEA0Cw1KnMqznJeAwCOmAfierwpxs0yLJJb1cV8u_OHoo3F3Min1rummH5--NAUs3a5qs_FSXRNDhe_cyhe7-9eJg9y9jx9nIxnskbCrfRMjOQihZHXRFXgCkrjQakYA_OCSHU7MrosdWQfovcKnYsGkHEUox4K7P_Wqc05hWjf0-rNpYNVYL91ba9rO137o2v3HaR7KHfHm2VIdt3u0qbr-T911VPrvG3T3xzUHVEazaYipb8AfA9i6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Algebraic Study of S5-Modal Gödel Logic</title><source>Springer Nature</source><creator>Castaño, Diego ; Cimadamore, Cecilia ; Varela, José P. Díaz ; Rueda, Laura</creator><creatorcontrib>Castaño, Diego ; Cimadamore, Cecilia ; Varela, José P. Díaz ; Rueda, Laura</creatorcontrib><description>In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators.</description><identifier>ISSN: 0039-3215</identifier><identifier>EISSN: 1572-8730</identifier><identifier>DOI: 10.1007/s11225-020-09934-x</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Computational Linguistics ; Education ; Logic ; Mathematical Logic and Foundations ; Philosophy</subject><ispartof>Studia logica, 2021-10, Vol.109 (5), p.937-967</ispartof><rights>Springer Nature B.V. 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3</cites><orcidid>0000-0002-2061-7273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Castaño, Diego</creatorcontrib><creatorcontrib>Cimadamore, Cecilia</creatorcontrib><creatorcontrib>Varela, José P. Díaz</creatorcontrib><creatorcontrib>Rueda, Laura</creatorcontrib><title>An Algebraic Study of S5-Modal Gödel Logic</title><title>Studia logica</title><addtitle>Stud Logica</addtitle><description>In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators.</description><subject>Computational Linguistics</subject><subject>Education</subject><subject>Logic</subject><subject>Mathematical Logic and Foundations</subject><subject>Philosophy</subject><issn>0039-3215</issn><issn>1572-8730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9jzFOAzEQRS0EEiFwAaptqJBhPF5ndsoogoAURBGoLWdtR4mWLLITKbkYF-BiLCwFFdUUM2_-f0JcKrhRAHSblUI0EhAkMOtS7o_EQBlCWZGGYzEA0Cw1KnMqznJeAwCOmAfierwpxs0yLJJb1cV8u_OHoo3F3Min1rummH5--NAUs3a5qs_FSXRNDhe_cyhe7-9eJg9y9jx9nIxnskbCrfRMjOQihZHXRFXgCkrjQakYA_OCSHU7MrosdWQfovcKnYsGkHEUox4K7P_Wqc05hWjf0-rNpYNVYL91ba9rO137o2v3HaR7KHfHm2VIdt3u0qbr-T911VPrvG3T3xzUHVEazaYipb8AfA9i6g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Castaño, Diego</creator><creator>Cimadamore, Cecilia</creator><creator>Varela, José P. Díaz</creator><creator>Rueda, Laura</creator><general>Springer</general><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2061-7273</orcidid></search><sort><creationdate>20211001</creationdate><title>An Algebraic Study of S5-Modal Gödel Logic</title><author>Castaño, Diego ; Cimadamore, Cecilia ; Varela, José P. Díaz ; Rueda, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Linguistics</topic><topic>Education</topic><topic>Logic</topic><topic>Mathematical Logic and Foundations</topic><topic>Philosophy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castaño, Diego</creatorcontrib><creatorcontrib>Cimadamore, Cecilia</creatorcontrib><creatorcontrib>Varela, José P. Díaz</creatorcontrib><creatorcontrib>Rueda, Laura</creatorcontrib><collection>CrossRef</collection><jtitle>Studia logica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castaño, Diego</au><au>Cimadamore, Cecilia</au><au>Varela, José P. Díaz</au><au>Rueda, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algebraic Study of S5-Modal Gödel Logic</atitle><jtitle>Studia logica</jtitle><stitle>Stud Logica</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>109</volume><issue>5</issue><spage>937</spage><epage>967</epage><pages>937-967</pages><issn>0039-3215</issn><eissn>1572-8730</eissn><abstract>In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11225-020-09934-x</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2061-7273</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0039-3215
ispartof Studia logica, 2021-10, Vol.109 (5), p.937-967
issn 0039-3215
1572-8730
language eng
recordid cdi_crossref_primary_10_1007_s11225_020_09934_x
source Springer Nature
subjects Computational Linguistics
Education
Logic
Mathematical Logic and Foundations
Philosophy
title An Algebraic Study of S5-Modal Gödel Logic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algebraic%20Study%20of%20S5-Modal%20G%C3%B6del%20Logic&rft.jtitle=Studia%20logica&rft.au=Casta%C3%B1o,%20Diego&rft.date=2021-10-01&rft.volume=109&rft.issue=5&rft.spage=937&rft.epage=967&rft.pages=937-967&rft.issn=0039-3215&rft.eissn=1572-8730&rft_id=info:doi/10.1007/s11225-020-09934-x&rft_dat=%3Cjstor_cross%3E45395871%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45395871&rfr_iscdi=true