Loading…
An Algebraic Study of S5-Modal Gödel Logic
In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally fini...
Saved in:
Published in: | Studia logica 2021-10, Vol.109 (5), p.937-967 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3 |
container_end_page | 967 |
container_issue | 5 |
container_start_page | 937 |
container_title | Studia logica |
container_volume | 109 |
creator | Castaño, Diego Cimadamore, Cecilia Varela, José P. Díaz Rueda, Laura |
description | In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators. |
doi_str_mv | 10.1007/s11225-020-09934-x |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11225_020_09934_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45395871</jstor_id><sourcerecordid>45395871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3</originalsourceid><addsrcrecordid>eNp9jzFOAzEQRS0EEiFwAaptqJBhPF5ndsoogoAURBGoLWdtR4mWLLITKbkYF-BiLCwFFdUUM2_-f0JcKrhRAHSblUI0EhAkMOtS7o_EQBlCWZGGYzEA0Cw1KnMqznJeAwCOmAfierwpxs0yLJJb1cV8u_OHoo3F3Min1rummH5--NAUs3a5qs_FSXRNDhe_cyhe7-9eJg9y9jx9nIxnskbCrfRMjOQihZHXRFXgCkrjQakYA_OCSHU7MrosdWQfovcKnYsGkHEUox4K7P_Wqc05hWjf0-rNpYNVYL91ba9rO137o2v3HaR7KHfHm2VIdt3u0qbr-T911VPrvG3T3xzUHVEazaYipb8AfA9i6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Algebraic Study of S5-Modal Gödel Logic</title><source>Springer Nature</source><creator>Castaño, Diego ; Cimadamore, Cecilia ; Varela, José P. Díaz ; Rueda, Laura</creator><creatorcontrib>Castaño, Diego ; Cimadamore, Cecilia ; Varela, José P. Díaz ; Rueda, Laura</creatorcontrib><description>In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators.</description><identifier>ISSN: 0039-3215</identifier><identifier>EISSN: 1572-8730</identifier><identifier>DOI: 10.1007/s11225-020-09934-x</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Computational Linguistics ; Education ; Logic ; Mathematical Logic and Foundations ; Philosophy</subject><ispartof>Studia logica, 2021-10, Vol.109 (5), p.937-967</ispartof><rights>Springer Nature B.V. 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3</cites><orcidid>0000-0002-2061-7273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Castaño, Diego</creatorcontrib><creatorcontrib>Cimadamore, Cecilia</creatorcontrib><creatorcontrib>Varela, José P. Díaz</creatorcontrib><creatorcontrib>Rueda, Laura</creatorcontrib><title>An Algebraic Study of S5-Modal Gödel Logic</title><title>Studia logica</title><addtitle>Stud Logica</addtitle><description>In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators.</description><subject>Computational Linguistics</subject><subject>Education</subject><subject>Logic</subject><subject>Mathematical Logic and Foundations</subject><subject>Philosophy</subject><issn>0039-3215</issn><issn>1572-8730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9jzFOAzEQRS0EEiFwAaptqJBhPF5ndsoogoAURBGoLWdtR4mWLLITKbkYF-BiLCwFFdUUM2_-f0JcKrhRAHSblUI0EhAkMOtS7o_EQBlCWZGGYzEA0Cw1KnMqznJeAwCOmAfierwpxs0yLJJb1cV8u_OHoo3F3Min1rummH5--NAUs3a5qs_FSXRNDhe_cyhe7-9eJg9y9jx9nIxnskbCrfRMjOQihZHXRFXgCkrjQakYA_OCSHU7MrosdWQfovcKnYsGkHEUox4K7P_Wqc05hWjf0-rNpYNVYL91ba9rO137o2v3HaR7KHfHm2VIdt3u0qbr-T911VPrvG3T3xzUHVEazaYipb8AfA9i6g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Castaño, Diego</creator><creator>Cimadamore, Cecilia</creator><creator>Varela, José P. Díaz</creator><creator>Rueda, Laura</creator><general>Springer</general><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2061-7273</orcidid></search><sort><creationdate>20211001</creationdate><title>An Algebraic Study of S5-Modal Gödel Logic</title><author>Castaño, Diego ; Cimadamore, Cecilia ; Varela, José P. Díaz ; Rueda, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Linguistics</topic><topic>Education</topic><topic>Logic</topic><topic>Mathematical Logic and Foundations</topic><topic>Philosophy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castaño, Diego</creatorcontrib><creatorcontrib>Cimadamore, Cecilia</creatorcontrib><creatorcontrib>Varela, José P. Díaz</creatorcontrib><creatorcontrib>Rueda, Laura</creatorcontrib><collection>CrossRef</collection><jtitle>Studia logica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castaño, Diego</au><au>Cimadamore, Cecilia</au><au>Varela, José P. Díaz</au><au>Rueda, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algebraic Study of S5-Modal Gödel Logic</atitle><jtitle>Studia logica</jtitle><stitle>Stud Logica</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>109</volume><issue>5</issue><spage>937</spage><epage>967</epage><pages>937-967</pages><issn>0039-3215</issn><eissn>1572-8730</eissn><abstract>In this paper we continue the study of the variety MG of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of MG and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of the locally finite subvarieties mentioned above by means of their dual spaces. Finally, we study some further properties of the subvariety generated by monadic Gödel chains: we present a characteristic chain for this variety, we prove that a Glivenko-type theorem holds for these algebras and we characterize free algebras over n generators.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11225-020-09934-x</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2061-7273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-3215 |
ispartof | Studia logica, 2021-10, Vol.109 (5), p.937-967 |
issn | 0039-3215 1572-8730 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11225_020_09934_x |
source | Springer Nature |
subjects | Computational Linguistics Education Logic Mathematical Logic and Foundations Philosophy |
title | An Algebraic Study of S5-Modal Gödel Logic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algebraic%20Study%20of%20S5-Modal%20G%C3%B6del%20Logic&rft.jtitle=Studia%20logica&rft.au=Casta%C3%B1o,%20Diego&rft.date=2021-10-01&rft.volume=109&rft.issue=5&rft.spage=937&rft.epage=967&rft.pages=937-967&rft.issn=0039-3215&rft.eissn=1572-8730&rft_id=info:doi/10.1007/s11225-020-09934-x&rft_dat=%3Cjstor_cross%3E45395871%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-d97927af7e6d3778e98045d011ffe99b771f7e753443f9defdd12aaf502926ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45395871&rfr_iscdi=true |