Loading…
Inverse Sturm-Liouville problem on a figure-eight graph
We study the inverse problem for the Strum-Liouville equation on a graph that consists of two quasione-dimensional loops of the same length having a common vertex. As spectral data, we consider the set of eigenvalues of the entire system together with the sets of eigenvalues of two Dirichlet problem...
Saved in:
Published in: | Ukrainian mathematical journal 2008-09, Vol.60 (9), p.1360-1385 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-730e8e11cdac4c0a94f720f7dbe793df64bb82c242b63cfe303e62627595bb603 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-730e8e11cdac4c0a94f720f7dbe793df64bb82c242b63cfe303e62627595bb603 |
container_end_page | 1385 |
container_issue | 9 |
container_start_page | 1360 |
container_title | Ukrainian mathematical journal |
container_volume | 60 |
creator | Gomilko, A. M. Pivovarchik, V. N. |
description | We study the inverse problem for the Strum-Liouville equation on a graph that consists of two quasione-dimensional loops of the same length having a common vertex. As spectral data, we consider the set of eigenvalues of the entire system together with the sets of eigenvalues of two Dirichlet problems for the Sturm-Liouville equations with the condition of total reflection at the vertex of the graph. We obtain conditions for three sequences of real numbers that enable one to reconstruct a pair of real potentials from
L
2
corresponding to each loop. We give an algorithm for the construction of the entire set of potentials corresponding to this triple of spectra. |
doi_str_mv | 10.1007/s11253-009-0145-9 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11253_009_0145_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11253_009_0145_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-730e8e11cdac4c0a94f720f7dbe793df64bb82c242b63cfe303e62627595bb603</originalsourceid><addsrcrecordid>eNp9j8tOwzAURC0EEqHwAezyA4ZrO47jJap4VIrEAlhbsXOdpspLdlKJvydVu2Y1mzmjOYQ8MnhiAOo5MsaloACaAssk1VckYVIJqoXKr0kCkDEqtZa35C7GA8BKFSohajccMURMv-Yl9LRsx-XYdh2mUxhth306DmmV-rZZAlJsm_2cNqGa9vfkxlddxIdLbsjP2-v39oOWn--77UtJHS-KmSoBWCBjrq5c5qDSmVccvKotKi1qn2fWFtzxjNtcOI8CBOY850pqaW0OYkPYedeFMcaA3kyh7avwaxiYk7k5m5vV3JzMjV4Zfmbi2h0aDOYwLmFYb_4D_QGcr1tS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inverse Sturm-Liouville problem on a figure-eight graph</title><source>Springer Link</source><creator>Gomilko, A. M. ; Pivovarchik, V. N.</creator><creatorcontrib>Gomilko, A. M. ; Pivovarchik, V. N.</creatorcontrib><description>We study the inverse problem for the Strum-Liouville equation on a graph that consists of two quasione-dimensional loops of the same length having a common vertex. As spectral data, we consider the set of eigenvalues of the entire system together with the sets of eigenvalues of two Dirichlet problems for the Sturm-Liouville equations with the condition of total reflection at the vertex of the graph. We obtain conditions for three sequences of real numbers that enable one to reconstruct a pair of real potentials from
L
2
corresponding to each loop. We give an algorithm for the construction of the entire set of potentials corresponding to this triple of spectra.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-009-0145-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2008-09, Vol.60 (9), p.1360-1385</ispartof><rights>Springer Science+Business Media, Inc. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-730e8e11cdac4c0a94f720f7dbe793df64bb82c242b63cfe303e62627595bb603</citedby><cites>FETCH-LOGICAL-c288t-730e8e11cdac4c0a94f720f7dbe793df64bb82c242b63cfe303e62627595bb603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gomilko, A. M.</creatorcontrib><creatorcontrib>Pivovarchik, V. N.</creatorcontrib><title>Inverse Sturm-Liouville problem on a figure-eight graph</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We study the inverse problem for the Strum-Liouville equation on a graph that consists of two quasione-dimensional loops of the same length having a common vertex. As spectral data, we consider the set of eigenvalues of the entire system together with the sets of eigenvalues of two Dirichlet problems for the Sturm-Liouville equations with the condition of total reflection at the vertex of the graph. We obtain conditions for three sequences of real numbers that enable one to reconstruct a pair of real potentials from
L
2
corresponding to each loop. We give an algorithm for the construction of the entire set of potentials corresponding to this triple of spectra.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAURC0EEqHwAezyA4ZrO47jJap4VIrEAlhbsXOdpspLdlKJvydVu2Y1mzmjOYQ8MnhiAOo5MsaloACaAssk1VckYVIJqoXKr0kCkDEqtZa35C7GA8BKFSohajccMURMv-Yl9LRsx-XYdh2mUxhth306DmmV-rZZAlJsm_2cNqGa9vfkxlddxIdLbsjP2-v39oOWn--77UtJHS-KmSoBWCBjrq5c5qDSmVccvKotKi1qn2fWFtzxjNtcOI8CBOY850pqaW0OYkPYedeFMcaA3kyh7avwaxiYk7k5m5vV3JzMjV4Zfmbi2h0aDOYwLmFYb_4D_QGcr1tS</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Gomilko, A. M.</creator><creator>Pivovarchik, V. N.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080901</creationdate><title>Inverse Sturm-Liouville problem on a figure-eight graph</title><author>Gomilko, A. M. ; Pivovarchik, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-730e8e11cdac4c0a94f720f7dbe793df64bb82c242b63cfe303e62627595bb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomilko, A. M.</creatorcontrib><creatorcontrib>Pivovarchik, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomilko, A. M.</au><au>Pivovarchik, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Sturm-Liouville problem on a figure-eight graph</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>60</volume><issue>9</issue><spage>1360</spage><epage>1385</epage><pages>1360-1385</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We study the inverse problem for the Strum-Liouville equation on a graph that consists of two quasione-dimensional loops of the same length having a common vertex. As spectral data, we consider the set of eigenvalues of the entire system together with the sets of eigenvalues of two Dirichlet problems for the Sturm-Liouville equations with the condition of total reflection at the vertex of the graph. We obtain conditions for three sequences of real numbers that enable one to reconstruct a pair of real potentials from
L
2
corresponding to each loop. We give an algorithm for the construction of the entire set of potentials corresponding to this triple of spectra.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11253-009-0145-9</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2008-09, Vol.60 (9), p.1360-1385 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11253_009_0145_9 |
source | Springer Link |
subjects | Algebra Analysis Applications of Mathematics Geometry Mathematics Mathematics and Statistics Statistics |
title | Inverse Sturm-Liouville problem on a figure-eight graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Sturm-Liouville%20problem%20on%20a%20figure-eight%20graph&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Gomilko,%20A.%20M.&rft.date=2008-09-01&rft.volume=60&rft.issue=9&rft.spage=1360&rft.epage=1385&rft.pages=1360-1385&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-009-0145-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s11253_009_0145_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-730e8e11cdac4c0a94f720f7dbe793df64bb82c242b63cfe303e62627595bb603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |