Loading…
Experimental Determination of Cohesive Zone Models for Epoxy Composites
In this work, a new test set-up was applied in order to determine cohesive zone models experimentally. A high speed camera in combination with a digital image correlation system was used to record the local displacements enabling the detailed determination of crack opening values. The J-Integral met...
Saved in:
Published in: | Experimental mechanics 2011-06, Vol.51 (5), p.779-786 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, a new test set-up was applied in order to determine cohesive zone models experimentally. A high speed camera in combination with a digital image correlation system was used to record the local displacements enabling the detailed determination of crack opening values. The J-Integral method was used to calculate the cohesive stresses. The analyzed materials were composites made of glass fiber reinforced epoxy resin layers. Two different specimen geometries and the difference between warp and weft of the glass fiber mats were analyzed. As the specimen geometry didn’t have a significant influence, the difference between warp and weft, regarded by the loading direction, lead to considerably different cohesive zone laws. The initial part, the linear increase to a maximum stress, was very similar, while the damage evolution was either exponential or bilinear in shape. In future work, the derived cohesive zone models will be used to perform finite element simulations on laboratory specimens and on component scale. Thus, by comparison to the measurement result, the cohesive zone models can be evaluated. |
---|---|
ISSN: | 0014-4851 1741-2765 |
DOI: | 10.1007/s11340-010-9370-2 |