Loading…

Experimental Determination of Cohesive Zone Models for Epoxy Composites

In this work, a new test set-up was applied in order to determine cohesive zone models experimentally. A high speed camera in combination with a digital image correlation system was used to record the local displacements enabling the detailed determination of crack opening values. The J-Integral met...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mechanics 2011-06, Vol.51 (5), p.779-786
Main Authors: Fuchs, P. F., Major, Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, a new test set-up was applied in order to determine cohesive zone models experimentally. A high speed camera in combination with a digital image correlation system was used to record the local displacements enabling the detailed determination of crack opening values. The J-Integral method was used to calculate the cohesive stresses. The analyzed materials were composites made of glass fiber reinforced epoxy resin layers. Two different specimen geometries and the difference between warp and weft of the glass fiber mats were analyzed. As the specimen geometry didn’t have a significant influence, the difference between warp and weft, regarded by the loading direction, lead to considerably different cohesive zone laws. The initial part, the linear increase to a maximum stress, was very similar, while the damage evolution was either exponential or bilinear in shape. In future work, the derived cohesive zone models will be used to perform finite element simulations on laboratory specimens and on component scale. Thus, by comparison to the measurement result, the cohesive zone models can be evaluated.
ISSN:0014-4851
1741-2765
DOI:10.1007/s11340-010-9370-2