Loading…

A Small-Scale, Contactless, Pure Bending Device for In-situ Testing

The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material s...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mechanics 2015-10, Vol.55 (8), p.1511-1524
Main Authors: Hoefnagels, J.P.M., Ruybalid, A.P., Buizer, C.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173
cites cdi_FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173
container_end_page 1524
container_issue 8
container_start_page 1511
container_title Experimental mechanics
container_volume 55
creator Hoefnagels, J.P.M.
Ruybalid, A.P.
Buizer, C.A.
description The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material systems at the microscopic level. Improvements to conventional bending test methods are: (1) well-defined pure moment application without friction or local pressure contacts, through active feedback control of parasitic axial and transverse forces at the specimen edges, (2) continuous reversibility of the loading direction within an angular range of −114 ∘ ≤ θ ≤114 ∘ (minimum radius of 2 mm), (3) no view-obstruction from both the thickness and in-plane perspective, enabling in-situ optical and scanning electron microscopic studies of failure mechanisms under constant field-of-view. The pure bending test setup was validated by moment-curvature measurements of monocrystalline silicon. The setup’s continuous load-reversibility and strain determination were validated by cyclic tests and in-situ digital image correlation, respectively, on polyethylene napthalate specimens. Furthermore, in-situ microscopic failure analysis was demonstrated on multilayered flexible electronics, revealing fracture, delamination and buckling.
doi_str_mv 10.1007/s11340-015-0046-9
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11340_015_0046_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11340_015_0046_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFt-QKMzzeyme6yr1UJBofUc0nyULdtdSbaC_96UenYuc5h5Xl4exu4RHhBAPSZESSAACwFApagu2AgVoZiqsrhkIwAkQbMCr9lNSnvIjFTTEavnfH0wbSvW1rR-wuu-G4wdWp_ShH8co-dPvnNNt-PP_ruxnoc-8mUnUjMc-canIZ9u2VUwbfJ3f3vMPhcvm_pNrN5fl_V8JSwBDkLaYGZKlaCck86VjpzcOkXOFFVhgrVbKSV5Tz5gcJhHFmSJQM62FaCSY4bnXBv7lKIP-is2BxN_NII-WdBnCzpb0CcLusrM9Myk_NvtfNT7_hi7XPMf6Bd3R15e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Small-Scale, Contactless, Pure Bending Device for In-situ Testing</title><source>Springer Link</source><creator>Hoefnagels, J.P.M. ; Ruybalid, A.P. ; Buizer, C.A.</creator><creatorcontrib>Hoefnagels, J.P.M. ; Ruybalid, A.P. ; Buizer, C.A.</creatorcontrib><description>The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material systems at the microscopic level. Improvements to conventional bending test methods are: (1) well-defined pure moment application without friction or local pressure contacts, through active feedback control of parasitic axial and transverse forces at the specimen edges, (2) continuous reversibility of the loading direction within an angular range of −114 ∘ ≤ θ ≤114 ∘ (minimum radius of 2 mm), (3) no view-obstruction from both the thickness and in-plane perspective, enabling in-situ optical and scanning electron microscopic studies of failure mechanisms under constant field-of-view. The pure bending test setup was validated by moment-curvature measurements of monocrystalline silicon. The setup’s continuous load-reversibility and strain determination were validated by cyclic tests and in-situ digital image correlation, respectively, on polyethylene napthalate specimens. Furthermore, in-situ microscopic failure analysis was demonstrated on multilayered flexible electronics, revealing fracture, delamination and buckling.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-015-0046-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Dynamical Systems ; Engineering ; Lasers ; Optical Devices ; Optics ; Photonics ; Solid Mechanics ; Vibration</subject><ispartof>Experimental mechanics, 2015-10, Vol.55 (8), p.1511-1524</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173</citedby><cites>FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hoefnagels, J.P.M.</creatorcontrib><creatorcontrib>Ruybalid, A.P.</creatorcontrib><creatorcontrib>Buizer, C.A.</creatorcontrib><title>A Small-Scale, Contactless, Pure Bending Device for In-situ Testing</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material systems at the microscopic level. Improvements to conventional bending test methods are: (1) well-defined pure moment application without friction or local pressure contacts, through active feedback control of parasitic axial and transverse forces at the specimen edges, (2) continuous reversibility of the loading direction within an angular range of −114 ∘ ≤ θ ≤114 ∘ (minimum radius of 2 mm), (3) no view-obstruction from both the thickness and in-plane perspective, enabling in-situ optical and scanning electron microscopic studies of failure mechanisms under constant field-of-view. The pure bending test setup was validated by moment-curvature measurements of monocrystalline silicon. The setup’s continuous load-reversibility and strain determination were validated by cyclic tests and in-situ digital image correlation, respectively, on polyethylene napthalate specimens. Furthermore, in-situ microscopic failure analysis was demonstrated on multilayered flexible electronics, revealing fracture, delamination and buckling.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Solid Mechanics</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFt-QKMzzeyme6yr1UJBofUc0nyULdtdSbaC_96UenYuc5h5Xl4exu4RHhBAPSZESSAACwFApagu2AgVoZiqsrhkIwAkQbMCr9lNSnvIjFTTEavnfH0wbSvW1rR-wuu-G4wdWp_ShH8co-dPvnNNt-PP_ruxnoc-8mUnUjMc-canIZ9u2VUwbfJ3f3vMPhcvm_pNrN5fl_V8JSwBDkLaYGZKlaCck86VjpzcOkXOFFVhgrVbKSV5Tz5gcJhHFmSJQM62FaCSY4bnXBv7lKIP-is2BxN_NII-WdBnCzpb0CcLusrM9Myk_NvtfNT7_hi7XPMf6Bd3R15e</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Hoefnagels, J.P.M.</creator><creator>Ruybalid, A.P.</creator><creator>Buizer, C.A.</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>A Small-Scale, Contactless, Pure Bending Device for In-situ Testing</title><author>Hoefnagels, J.P.M. ; Ruybalid, A.P. ; Buizer, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Solid Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoefnagels, J.P.M.</creatorcontrib><creatorcontrib>Ruybalid, A.P.</creatorcontrib><creatorcontrib>Buizer, C.A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoefnagels, J.P.M.</au><au>Ruybalid, A.P.</au><au>Buizer, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Small-Scale, Contactless, Pure Bending Device for In-situ Testing</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>55</volume><issue>8</issue><spage>1511</spage><epage>1524</epage><pages>1511-1524</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material systems at the microscopic level. Improvements to conventional bending test methods are: (1) well-defined pure moment application without friction or local pressure contacts, through active feedback control of parasitic axial and transverse forces at the specimen edges, (2) continuous reversibility of the loading direction within an angular range of −114 ∘ ≤ θ ≤114 ∘ (minimum radius of 2 mm), (3) no view-obstruction from both the thickness and in-plane perspective, enabling in-situ optical and scanning electron microscopic studies of failure mechanisms under constant field-of-view. The pure bending test setup was validated by moment-curvature measurements of monocrystalline silicon. The setup’s continuous load-reversibility and strain determination were validated by cyclic tests and in-situ digital image correlation, respectively, on polyethylene napthalate specimens. Furthermore, in-situ microscopic failure analysis was demonstrated on multilayered flexible electronics, revealing fracture, delamination and buckling.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-015-0046-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4851
ispartof Experimental mechanics, 2015-10, Vol.55 (8), p.1511-1524
issn 0014-4851
1741-2765
language eng
recordid cdi_crossref_primary_10_1007_s11340_015_0046_9
source Springer Link
subjects Biomedical Engineering and Bioengineering
Characterization and Evaluation of Materials
Control
Dynamical Systems
Engineering
Lasers
Optical Devices
Optics
Photonics
Solid Mechanics
Vibration
title A Small-Scale, Contactless, Pure Bending Device for In-situ Testing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Small-Scale,%20Contactless,%20Pure%20Bending%20Device%20for%20In-situ%20Testing&rft.jtitle=Experimental%20mechanics&rft.au=Hoefnagels,%20J.P.M.&rft.date=2015-10-01&rft.volume=55&rft.issue=8&rft.spage=1511&rft.epage=1524&rft.pages=1511-1524&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-015-0046-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s11340_015_0046_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true