Loading…
A Small-Scale, Contactless, Pure Bending Device for In-situ Testing
The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material s...
Saved in:
Published in: | Experimental mechanics 2015-10, Vol.55 (8), p.1511-1524 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173 |
container_end_page | 1524 |
container_issue | 8 |
container_start_page | 1511 |
container_title | Experimental mechanics |
container_volume | 55 |
creator | Hoefnagels, J.P.M. Ruybalid, A.P. Buizer, C.A. |
description | The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material systems at the microscopic level. Improvements to conventional bending test methods are: (1) well-defined pure moment application without friction or local pressure contacts, through active feedback control of parasitic axial and transverse forces at the specimen edges, (2) continuous reversibility of the loading direction within an angular range of −114
∘
≤
θ
≤114
∘
(minimum radius of 2 mm), (3) no view-obstruction from both the thickness and in-plane perspective, enabling
in-situ
optical and scanning electron microscopic studies of failure mechanisms under constant field-of-view. The pure bending test setup was validated by moment-curvature measurements of monocrystalline silicon. The setup’s continuous load-reversibility and strain determination were validated by cyclic tests and
in-situ
digital image correlation, respectively, on polyethylene napthalate specimens. Furthermore,
in-situ
microscopic failure analysis was demonstrated on multilayered flexible electronics, revealing fracture, delamination and buckling. |
doi_str_mv | 10.1007/s11340-015-0046-9 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11340_015_0046_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11340_015_0046_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFt-QKMzzeyme6yr1UJBofUc0nyULdtdSbaC_96UenYuc5h5Xl4exu4RHhBAPSZESSAACwFApagu2AgVoZiqsrhkIwAkQbMCr9lNSnvIjFTTEavnfH0wbSvW1rR-wuu-G4wdWp_ShH8co-dPvnNNt-PP_ruxnoc-8mUnUjMc-canIZ9u2VUwbfJ3f3vMPhcvm_pNrN5fl_V8JSwBDkLaYGZKlaCck86VjpzcOkXOFFVhgrVbKSV5Tz5gcJhHFmSJQM62FaCSY4bnXBv7lKIP-is2BxN_NII-WdBnCzpb0CcLusrM9Myk_NvtfNT7_hi7XPMf6Bd3R15e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Small-Scale, Contactless, Pure Bending Device for In-situ Testing</title><source>Springer Link</source><creator>Hoefnagels, J.P.M. ; Ruybalid, A.P. ; Buizer, C.A.</creator><creatorcontrib>Hoefnagels, J.P.M. ; Ruybalid, A.P. ; Buizer, C.A.</creatorcontrib><description>The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material systems at the microscopic level. Improvements to conventional bending test methods are: (1) well-defined pure moment application without friction or local pressure contacts, through active feedback control of parasitic axial and transverse forces at the specimen edges, (2) continuous reversibility of the loading direction within an angular range of −114
∘
≤
θ
≤114
∘
(minimum radius of 2 mm), (3) no view-obstruction from both the thickness and in-plane perspective, enabling
in-situ
optical and scanning electron microscopic studies of failure mechanisms under constant field-of-view. The pure bending test setup was validated by moment-curvature measurements of monocrystalline silicon. The setup’s continuous load-reversibility and strain determination were validated by cyclic tests and
in-situ
digital image correlation, respectively, on polyethylene napthalate specimens. Furthermore,
in-situ
microscopic failure analysis was demonstrated on multilayered flexible electronics, revealing fracture, delamination and buckling.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-015-0046-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Dynamical Systems ; Engineering ; Lasers ; Optical Devices ; Optics ; Photonics ; Solid Mechanics ; Vibration</subject><ispartof>Experimental mechanics, 2015-10, Vol.55 (8), p.1511-1524</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173</citedby><cites>FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hoefnagels, J.P.M.</creatorcontrib><creatorcontrib>Ruybalid, A.P.</creatorcontrib><creatorcontrib>Buizer, C.A.</creatorcontrib><title>A Small-Scale, Contactless, Pure Bending Device for In-situ Testing</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material systems at the microscopic level. Improvements to conventional bending test methods are: (1) well-defined pure moment application without friction or local pressure contacts, through active feedback control of parasitic axial and transverse forces at the specimen edges, (2) continuous reversibility of the loading direction within an angular range of −114
∘
≤
θ
≤114
∘
(minimum radius of 2 mm), (3) no view-obstruction from both the thickness and in-plane perspective, enabling
in-situ
optical and scanning electron microscopic studies of failure mechanisms under constant field-of-view. The pure bending test setup was validated by moment-curvature measurements of monocrystalline silicon. The setup’s continuous load-reversibility and strain determination were validated by cyclic tests and
in-situ
digital image correlation, respectively, on polyethylene napthalate specimens. Furthermore,
in-situ
microscopic failure analysis was demonstrated on multilayered flexible electronics, revealing fracture, delamination and buckling.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Solid Mechanics</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFt-QKMzzeyme6yr1UJBofUc0nyULdtdSbaC_96UenYuc5h5Xl4exu4RHhBAPSZESSAACwFApagu2AgVoZiqsrhkIwAkQbMCr9lNSnvIjFTTEavnfH0wbSvW1rR-wuu-G4wdWp_ShH8co-dPvnNNt-PP_ruxnoc-8mUnUjMc-canIZ9u2VUwbfJ3f3vMPhcvm_pNrN5fl_V8JSwBDkLaYGZKlaCck86VjpzcOkXOFFVhgrVbKSV5Tz5gcJhHFmSJQM62FaCSY4bnXBv7lKIP-is2BxN_NII-WdBnCzpb0CcLusrM9Myk_NvtfNT7_hi7XPMf6Bd3R15e</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Hoefnagels, J.P.M.</creator><creator>Ruybalid, A.P.</creator><creator>Buizer, C.A.</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>A Small-Scale, Contactless, Pure Bending Device for In-situ Testing</title><author>Hoefnagels, J.P.M. ; Ruybalid, A.P. ; Buizer, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Solid Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoefnagels, J.P.M.</creatorcontrib><creatorcontrib>Ruybalid, A.P.</creatorcontrib><creatorcontrib>Buizer, C.A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoefnagels, J.P.M.</au><au>Ruybalid, A.P.</au><au>Buizer, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Small-Scale, Contactless, Pure Bending Device for In-situ Testing</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>55</volume><issue>8</issue><spage>1511</spage><epage>1524</epage><pages>1511-1524</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>The introduction of flexible electronics calls for new ways of measuring the mechanical limits and failure mechanisms resulting from (large) bending loads during manufacturing and application. Therefore, an autonomous, miniaturized, pure bending test apparatus was developed to investigate material systems at the microscopic level. Improvements to conventional bending test methods are: (1) well-defined pure moment application without friction or local pressure contacts, through active feedback control of parasitic axial and transverse forces at the specimen edges, (2) continuous reversibility of the loading direction within an angular range of −114
∘
≤
θ
≤114
∘
(minimum radius of 2 mm), (3) no view-obstruction from both the thickness and in-plane perspective, enabling
in-situ
optical and scanning electron microscopic studies of failure mechanisms under constant field-of-view. The pure bending test setup was validated by moment-curvature measurements of monocrystalline silicon. The setup’s continuous load-reversibility and strain determination were validated by cyclic tests and
in-situ
digital image correlation, respectively, on polyethylene napthalate specimens. Furthermore,
in-situ
microscopic failure analysis was demonstrated on multilayered flexible electronics, revealing fracture, delamination and buckling.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-015-0046-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4851 |
ispartof | Experimental mechanics, 2015-10, Vol.55 (8), p.1511-1524 |
issn | 0014-4851 1741-2765 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11340_015_0046_9 |
source | Springer Link |
subjects | Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Control Dynamical Systems Engineering Lasers Optical Devices Optics Photonics Solid Mechanics Vibration |
title | A Small-Scale, Contactless, Pure Bending Device for In-situ Testing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Small-Scale,%20Contactless,%20Pure%20Bending%20Device%20for%20In-situ%20Testing&rft.jtitle=Experimental%20mechanics&rft.au=Hoefnagels,%20J.P.M.&rft.date=2015-10-01&rft.volume=55&rft.issue=8&rft.spage=1511&rft.epage=1524&rft.pages=1511-1524&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-015-0046-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s11340_015_0046_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-3cfa877607dd3dd6d4d3bd74da595afccb3334ee4ef1fd1111354c44038b90173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |