Loading…
B-SPLINE PATCHES AND TRANSFINITE INTERPOLATION METHOD FOR PDE CONTROLLED SIMULATION
This paper is to discuss an approach which combines B-spline patches and transfinite interpolation to establish a linear algebraic system for solving partial differential equations and modify the WEB-spline method developed by Klaus Hollig to derive this new idea. First of all, the authors replace t...
Saved in:
Published in: | Journal of systems science and complexity 2012-04, Vol.25 (2), p.348-361 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c314t-96ebf315bd1e1d076284c88ac82d4cbe74002b1243bedbacf93def2188ed45b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-96ebf315bd1e1d076284c88ac82d4cbe74002b1243bedbacf93def2188ed45b13 |
container_end_page | 361 |
container_issue | 2 |
container_start_page | 348 |
container_title | Journal of systems science and complexity |
container_volume | 25 |
creator | Liu, Yuanjie Li, Hongbo |
description | This paper is to discuss an approach which combines B-spline patches and transfinite interpolation to establish a linear algebraic system for solving partial differential equations and modify the WEB-spline method developed by Klaus Hollig to derive this new idea. First of all, the authors replace the R-function method with transfinite interpolation to build a function which vanishes on boundaries. Secondly, the authors simulate the partial differential equation by directly applying differential opera- tors to basis functions, which is similar to the RBF method rather than Hollig's method. These new strategies then make the constructing of bases and the linear system much more straightforward. And as the interpolation is brought in, the design of schemes for solving practical PDEs can be more flexi- ble. This new method is easy to carry out and suitable for simulations in the fields such as graphics to achieve rapid rendering. Especially when the specified much faster than WEB-spline method. precision is not very high, this method performs |
doi_str_mv | 10.1007/s11424-012-1148-4 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11424_012_1148_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>41905932</cqvip_id><sourcerecordid>10_1007_s11424_012_1148_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-96ebf315bd1e1d076284c88ac82d4cbe74002b1243bedbacf93def2188ed45b13</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANzMAxh2bSdxjqF1aaQ0iZL0bOXHKVTQQgIH3h6jVBw57Rz2mxkNIbcI9wgQPIyIkksGyJlTiskzMkPPC1kAfnDuNEDIfOTyklyN4x5A-CGoGSkfWZkncappHlWLtS5plC5pVURpuYrTuNI0Titd5FkSVXGW0o2u1tmSrrKC5ktNF1laFVmS6CUt4812eromF339Otqb052T7Uo7c5ZkT_EiSlgrUH6y0LdNL9BrOrTYQeBzJVul6lbxTraNDSQAb1xl0diuqds-FJ3tOSplO-k1KOYEJ992OI7jYHvzPry81cO3QTC_q5hpFeNWMb-rGOkYPjGj-z3s7GD2x6_h4Gr-C92dgp6Ph92H4_6SJIbghYKLH4JRaTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>B-SPLINE PATCHES AND TRANSFINITE INTERPOLATION METHOD FOR PDE CONTROLLED SIMULATION</title><source>Springer Nature</source><creator>Liu, Yuanjie ; Li, Hongbo</creator><creatorcontrib>Liu, Yuanjie ; Li, Hongbo</creatorcontrib><description>This paper is to discuss an approach which combines B-spline patches and transfinite interpolation to establish a linear algebraic system for solving partial differential equations and modify the WEB-spline method developed by Klaus Hollig to derive this new idea. First of all, the authors replace the R-function method with transfinite interpolation to build a function which vanishes on boundaries. Secondly, the authors simulate the partial differential equation by directly applying differential opera- tors to basis functions, which is similar to the RBF method rather than Hollig's method. These new strategies then make the constructing of bases and the linear system much more straightforward. And as the interpolation is brought in, the design of schemes for solving practical PDEs can be more flexi- ble. This new method is easy to carry out and suitable for simulations in the fields such as graphics to achieve rapid rendering. Especially when the specified much faster than WEB-spline method. precision is not very high, this method performs</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-012-1148-4</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Complex Systems ; Control ; EB样条 ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; PDE ; Statistics ; Systems Theory ; 偏微分方程 ; 控制模拟 ; 插值方法 ; 线性系统 ; 补丁 ; 超限插值</subject><ispartof>Journal of systems science and complexity, 2012-04, Vol.25 (2), p.348-361</ispartof><rights>Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-96ebf315bd1e1d076284c88ac82d4cbe74002b1243bedbacf93def2188ed45b13</citedby><cites>FETCH-LOGICAL-c314t-96ebf315bd1e1d076284c88ac82d4cbe74002b1243bedbacf93def2188ed45b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84400X/84400X.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Yuanjie</creatorcontrib><creatorcontrib>Li, Hongbo</creatorcontrib><title>B-SPLINE PATCHES AND TRANSFINITE INTERPOLATION METHOD FOR PDE CONTROLLED SIMULATION</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><addtitle>Journal of Systems Science and Complexity</addtitle><description>This paper is to discuss an approach which combines B-spline patches and transfinite interpolation to establish a linear algebraic system for solving partial differential equations and modify the WEB-spline method developed by Klaus Hollig to derive this new idea. First of all, the authors replace the R-function method with transfinite interpolation to build a function which vanishes on boundaries. Secondly, the authors simulate the partial differential equation by directly applying differential opera- tors to basis functions, which is similar to the RBF method rather than Hollig's method. These new strategies then make the constructing of bases and the linear system much more straightforward. And as the interpolation is brought in, the design of schemes for solving practical PDEs can be more flexi- ble. This new method is easy to carry out and suitable for simulations in the fields such as graphics to achieve rapid rendering. Especially when the specified much faster than WEB-spline method. precision is not very high, this method performs</description><subject>Complex Systems</subject><subject>Control</subject><subject>EB样条</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>PDE</subject><subject>Statistics</subject><subject>Systems Theory</subject><subject>偏微分方程</subject><subject>控制模拟</subject><subject>插值方法</subject><subject>线性系统</subject><subject>补丁</subject><subject>超限插值</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANzMAxh2bSdxjqF1aaQ0iZL0bOXHKVTQQgIH3h6jVBw57Rz2mxkNIbcI9wgQPIyIkksGyJlTiskzMkPPC1kAfnDuNEDIfOTyklyN4x5A-CGoGSkfWZkncappHlWLtS5plC5pVURpuYrTuNI0Titd5FkSVXGW0o2u1tmSrrKC5ktNF1laFVmS6CUt4812eromF339Otqb052T7Uo7c5ZkT_EiSlgrUH6y0LdNL9BrOrTYQeBzJVul6lbxTraNDSQAb1xl0diuqds-FJ3tOSplO-k1KOYEJ992OI7jYHvzPry81cO3QTC_q5hpFeNWMb-rGOkYPjGj-z3s7GD2x6_h4Gr-C92dgp6Ph92H4_6SJIbghYKLH4JRaTU</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Liu, Yuanjie</creator><creator>Li, Hongbo</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120401</creationdate><title>B-SPLINE PATCHES AND TRANSFINITE INTERPOLATION METHOD FOR PDE CONTROLLED SIMULATION</title><author>Liu, Yuanjie ; Li, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-96ebf315bd1e1d076284c88ac82d4cbe74002b1243bedbacf93def2188ed45b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>EB样条</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>PDE</topic><topic>Statistics</topic><topic>Systems Theory</topic><topic>偏微分方程</topic><topic>控制模拟</topic><topic>插值方法</topic><topic>线性系统</topic><topic>补丁</topic><topic>超限插值</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuanjie</creatorcontrib><creatorcontrib>Li, Hongbo</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuanjie</au><au>Li, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>B-SPLINE PATCHES AND TRANSFINITE INTERPOLATION METHOD FOR PDE CONTROLLED SIMULATION</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><addtitle>Journal of Systems Science and Complexity</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>25</volume><issue>2</issue><spage>348</spage><epage>361</epage><pages>348-361</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>This paper is to discuss an approach which combines B-spline patches and transfinite interpolation to establish a linear algebraic system for solving partial differential equations and modify the WEB-spline method developed by Klaus Hollig to derive this new idea. First of all, the authors replace the R-function method with transfinite interpolation to build a function which vanishes on boundaries. Secondly, the authors simulate the partial differential equation by directly applying differential opera- tors to basis functions, which is similar to the RBF method rather than Hollig's method. These new strategies then make the constructing of bases and the linear system much more straightforward. And as the interpolation is brought in, the design of schemes for solving practical PDEs can be more flexi- ble. This new method is easy to carry out and suitable for simulations in the fields such as graphics to achieve rapid rendering. Especially when the specified much faster than WEB-spline method. precision is not very high, this method performs</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-012-1148-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2012-04, Vol.25 (2), p.348-361 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11424_012_1148_4 |
source | Springer Nature |
subjects | Complex Systems Control EB样条 Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory PDE Statistics Systems Theory 偏微分方程 控制模拟 插值方法 线性系统 补丁 超限插值 |
title | B-SPLINE PATCHES AND TRANSFINITE INTERPOLATION METHOD FOR PDE CONTROLLED SIMULATION |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B-SPLINE%20PATCHES%20AND%20TRANSFINITE%20INTERPOLATION%20METHOD%20FOR%20PDE%20CONTROLLED%20SIMULATION&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Liu,%20Yuanjie&rft.date=2012-04-01&rft.volume=25&rft.issue=2&rft.spage=348&rft.epage=361&rft.pages=348-361&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-012-1148-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s11424_012_1148_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-96ebf315bd1e1d076284c88ac82d4cbe74002b1243bedbacf93def2188ed45b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=41905932&rfr_iscdi=true |