Loading…

The Determination on Weight Hierarchies of q-Ary Linear Codes of Dimension 5 in Class IV

The weight hierarchy of a linear[n;k;q]code C over GF(q) is the sequence(d_1,d_2,…,d_k)where d_r is the smallest support of any r-dimensional subcode of C. "Determining all possible weight hierarchies of general linear codes" is a basic theoretical issue and has important scientific significance in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of systems science and complexity 2016-02, Vol.29 (1), p.243-258
Main Authors: Wang, Lijun, Chen, Wende
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c337t-b948505de2a63bd6bb2293256ab1496dda7ca6e4df75d3efa40859e69dd0459d3
container_end_page 258
container_issue 1
container_start_page 243
container_title Journal of systems science and complexity
container_volume 29
creator Wang, Lijun
Chen, Wende
description The weight hierarchy of a linear[n;k;q]code C over GF(q) is the sequence(d_1,d_2,…,d_k)where d_r is the smallest support of any r-dimensional subcode of C. "Determining all possible weight hierarchies of general linear codes" is a basic theoretical issue and has important scientific significance in communication system.However,it is impossible for g-ary linear codes of dimension k when q and k are slightly larger,then a reasonable formulation of the problem is modified as: "Determine almost all weight hierarchies of general g-ary linear codes of dimension k".In this paper,based on the finite projective geometry method,the authors study g-ary linear codes of dimension 5 in class IV,and find new necessary conditions of their weight hierarchies,and classify their weight hierarchies into6 subclasses.The authors also develop and improve the method of the subspace set,thus determine almost all weight hierarchies of 5-dimensional linear codes in class IV.It opens the way to determine the weight hierarchies of the rest two of 5-dimensional codes(classes III and VI),and break through the difficulties.Furthermore,the new necessary conditions show that original necessary conditions of the weight hierarchies of k-dimensional codes were not enough(not most tight nor best),so,it is important to excogitate further new necessary conditions for attacking and solving the fc-dimensional problem.
doi_str_mv 10.1007/s11424-015-4072-6
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11424_015_4072_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>667930675</cqvip_id><sourcerecordid>10_1007_s11424_015_4072_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b948505de2a63bd6bb2293256ab1496dda7ca6e4df75d3efa40859e69dd0459d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs_wFvwHs07zbFs1RYKXurjFrKbbDelzdpkPfTfm9LiURiYYZhvZvgAuCf4kWCsnjIhnHKEiUAcK4rkBRgRITRSWKrLUmOskSSUX4ObnDcYM6nxZAS-Vp2HMz_4tAvRDqGPsMSnD-tugPPgk01NF3yGfQv3aJoOcBmitwlWvTt1Z2HnYz6CAoYIq63NGS4-bsFVa7fZ353zGLy_PK-qOVq-vS6q6RI1jKkB1ZpPBBbOUytZ7WRdU6oZFdLWhGvpnFWNlZ67VgnHfGs5ngjtpXYOc6EdGwNy2tukPufkW_Odws6mgyHYHNWYkxpT1JijGiMLQ09MLrNx7ZPZ9D8pljf_hR7Oh7o-rveF-7skpdKseBbsF4uscUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Determination on Weight Hierarchies of q-Ary Linear Codes of Dimension 5 in Class IV</title><source>Springer Nature</source><creator>Wang, Lijun ; Chen, Wende</creator><creatorcontrib>Wang, Lijun ; Chen, Wende</creatorcontrib><description>The weight hierarchy of a linear[n;k;q]code C over GF(q) is the sequence(d_1,d_2,…,d_k)where d_r is the smallest support of any r-dimensional subcode of C. "Determining all possible weight hierarchies of general linear codes" is a basic theoretical issue and has important scientific significance in communication system.However,it is impossible for g-ary linear codes of dimension k when q and k are slightly larger,then a reasonable formulation of the problem is modified as: "Determine almost all weight hierarchies of general g-ary linear codes of dimension k".In this paper,based on the finite projective geometry method,the authors study g-ary linear codes of dimension 5 in class IV,and find new necessary conditions of their weight hierarchies,and classify their weight hierarchies into6 subclasses.The authors also develop and improve the method of the subspace set,thus determine almost all weight hierarchies of 5-dimensional linear codes in class IV.It opens the way to determine the weight hierarchies of the rest two of 5-dimensional codes(classes III and VI),and break through the difficulties.Furthermore,the new necessary conditions show that original necessary conditions of the weight hierarchies of k-dimensional codes were not enough(not most tight nor best),so,it is important to excogitate further new necessary conditions for attacking and solving the fc-dimensional problem.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-015-4072-6</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Complex Systems ; Control ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Statistics ; Systems Theory ; 理论 ; 系统学 ; 系统工程 ; 系统科学</subject><ispartof>Journal of systems science and complexity, 2016-02, Vol.29 (1), p.243-258</ispartof><rights>Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c337t-b948505de2a63bd6bb2293256ab1496dda7ca6e4df75d3efa40859e69dd0459d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84400X/84400X.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Chen, Wende</creatorcontrib><title>The Determination on Weight Hierarchies of q-Ary Linear Codes of Dimension 5 in Class IV</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><addtitle>Journal of Systems Science and Complexity</addtitle><description>The weight hierarchy of a linear[n;k;q]code C over GF(q) is the sequence(d_1,d_2,…,d_k)where d_r is the smallest support of any r-dimensional subcode of C. "Determining all possible weight hierarchies of general linear codes" is a basic theoretical issue and has important scientific significance in communication system.However,it is impossible for g-ary linear codes of dimension k when q and k are slightly larger,then a reasonable formulation of the problem is modified as: "Determine almost all weight hierarchies of general g-ary linear codes of dimension k".In this paper,based on the finite projective geometry method,the authors study g-ary linear codes of dimension 5 in class IV,and find new necessary conditions of their weight hierarchies,and classify their weight hierarchies into6 subclasses.The authors also develop and improve the method of the subspace set,thus determine almost all weight hierarchies of 5-dimensional linear codes in class IV.It opens the way to determine the weight hierarchies of the rest two of 5-dimensional codes(classes III and VI),and break through the difficulties.Furthermore,the new necessary conditions show that original necessary conditions of the weight hierarchies of k-dimensional codes were not enough(not most tight nor best),so,it is important to excogitate further new necessary conditions for attacking and solving the fc-dimensional problem.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Statistics</subject><subject>Systems Theory</subject><subject>理论</subject><subject>系统学</subject><subject>系统工程</subject><subject>系统科学</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKs_wFvwHs07zbFs1RYKXurjFrKbbDelzdpkPfTfm9LiURiYYZhvZvgAuCf4kWCsnjIhnHKEiUAcK4rkBRgRITRSWKrLUmOskSSUX4ObnDcYM6nxZAS-Vp2HMz_4tAvRDqGPsMSnD-tugPPgk01NF3yGfQv3aJoOcBmitwlWvTt1Z2HnYz6CAoYIq63NGS4-bsFVa7fZ353zGLy_PK-qOVq-vS6q6RI1jKkB1ZpPBBbOUytZ7WRdU6oZFdLWhGvpnFWNlZ67VgnHfGs5ngjtpXYOc6EdGwNy2tukPufkW_Odws6mgyHYHNWYkxpT1JijGiMLQ09MLrNx7ZPZ9D8pljf_hR7Oh7o-rveF-7skpdKseBbsF4uscUs</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Wang, Lijun</creator><creator>Chen, Wende</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160201</creationdate><title>The Determination on Weight Hierarchies of q-Ary Linear Codes of Dimension 5 in Class IV</title><author>Wang, Lijun ; Chen, Wende</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b948505de2a63bd6bb2293256ab1496dda7ca6e4df75d3efa40859e69dd0459d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Statistics</topic><topic>Systems Theory</topic><topic>理论</topic><topic>系统学</topic><topic>系统工程</topic><topic>系统科学</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Chen, Wende</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lijun</au><au>Chen, Wende</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Determination on Weight Hierarchies of q-Ary Linear Codes of Dimension 5 in Class IV</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><addtitle>Journal of Systems Science and Complexity</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>29</volume><issue>1</issue><spage>243</spage><epage>258</epage><pages>243-258</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>The weight hierarchy of a linear[n;k;q]code C over GF(q) is the sequence(d_1,d_2,…,d_k)where d_r is the smallest support of any r-dimensional subcode of C. "Determining all possible weight hierarchies of general linear codes" is a basic theoretical issue and has important scientific significance in communication system.However,it is impossible for g-ary linear codes of dimension k when q and k are slightly larger,then a reasonable formulation of the problem is modified as: "Determine almost all weight hierarchies of general g-ary linear codes of dimension k".In this paper,based on the finite projective geometry method,the authors study g-ary linear codes of dimension 5 in class IV,and find new necessary conditions of their weight hierarchies,and classify their weight hierarchies into6 subclasses.The authors also develop and improve the method of the subspace set,thus determine almost all weight hierarchies of 5-dimensional linear codes in class IV.It opens the way to determine the weight hierarchies of the rest two of 5-dimensional codes(classes III and VI),and break through the difficulties.Furthermore,the new necessary conditions show that original necessary conditions of the weight hierarchies of k-dimensional codes were not enough(not most tight nor best),so,it is important to excogitate further new necessary conditions for attacking and solving the fc-dimensional problem.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-015-4072-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2016-02, Vol.29 (1), p.243-258
issn 1009-6124
1559-7067
language eng
recordid cdi_crossref_primary_10_1007_s11424_015_4072_6
source Springer Nature
subjects Complex Systems
Control
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Statistics
Systems Theory
理论
系统学
系统工程
系统科学
title The Determination on Weight Hierarchies of q-Ary Linear Codes of Dimension 5 in Class IV
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Determination%20on%20Weight%20Hierarchies%20of%20q-Ary%20Linear%20Codes%20of%20Dimension%205%20in%20Class%20IV&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Wang,%20Lijun&rft.date=2016-02-01&rft.volume=29&rft.issue=1&rft.spage=243&rft.epage=258&rft.pages=243-258&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-015-4072-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s11424_015_4072_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-b948505de2a63bd6bb2293256ab1496dda7ca6e4df75d3efa40859e69dd0459d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=667930675&rfr_iscdi=true