Loading…
Finite locally primitive abelian Cayley graphs
Let Γ be a finite connected locally primitive Cayley graph of an abelian group. It is shown that one of the following holds: (1) Γ = K n , K n,n , K n,n − n K 2 , K n × … × K n ; (2) Γ is the standard double cover of K n × … × K n ; (3) Γ is a normal or a bi-normal Cayley graph of an elementary abel...
Saved in:
Published in: | Science China. Mathematics 2011-04, Vol.54 (4), p.845-854 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-7fc04417c767fdb982599c7d132bc08299a5b42ad28f2dc276e75f3378fe550d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-7fc04417c767fdb982599c7d132bc08299a5b42ad28f2dc276e75f3378fe550d3 |
container_end_page | 854 |
container_issue | 4 |
container_start_page | 845 |
container_title | Science China. Mathematics |
container_volume | 54 |
creator | Li, CaiHeng Lou, BenGong Pan, JiangMin |
description | Let
Γ
be a finite connected locally primitive Cayley graph of an abelian group. It is shown that one of the following holds: (1)
Γ
= K
n
, K
n,n
, K
n,n
−
n
K
2
, K
n
× … × K
n
; (2)
Γ
is the standard double cover of K
n
× … × K
n
; (3)
Γ
is a normal or a bi-normal Cayley graph of an elementary abelian or a meta-abelian 2-group. |
doi_str_mv | 10.1007/s11425-010-4134-0 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11425_010_4134_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11425_010_4134_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7fc04417c767fdb982599c7d132bc08299a5b42ad28f2dc276e75f3378fe550d3</originalsourceid><addsrcrecordid>eNp9j89KxDAQh4MouKz7AN76Alkn_5rkKMVVYcGLnkOaJmuX2C5JFfr2ptSzc5iZw3zD70PonsCeAMiHTAinAgMBzAnjGK7Qhqha49LoddlrybGkit2iXc5nKMU0cMk2aH_oh37yVRydjXGuLqn_6qf-x1e29bG3Q9XYOfq5OiV7-cx36CbYmP3ub27Rx-HpvXnBx7fn1-bxiB1VasIyOOCcSCdrGbpWKyq0drIjjLYOFNXaipZT21EVaOeorL0UgTGpghcCOrZFZP3r0phz8sEswWyaDQGzOJvV2RRnszgbKAxdmVxuh5NP5jx-p6HE_Af6BV3MWDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite locally primitive abelian Cayley graphs</title><source>Springer Link</source><creator>Li, CaiHeng ; Lou, BenGong ; Pan, JiangMin</creator><creatorcontrib>Li, CaiHeng ; Lou, BenGong ; Pan, JiangMin</creatorcontrib><description>Let
Γ
be a finite connected locally primitive Cayley graph of an abelian group. It is shown that one of the following holds: (1)
Γ
= K
n
, K
n,n
, K
n,n
−
n
K
2
, K
n
× … × K
n
; (2)
Γ
is the standard double cover of K
n
× … × K
n
; (3)
Γ
is a normal or a bi-normal Cayley graph of an elementary abelian or a meta-abelian 2-group.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-010-4134-0</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Science China. Mathematics, 2011-04, Vol.54 (4), p.845-854</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-7fc04417c767fdb982599c7d132bc08299a5b42ad28f2dc276e75f3378fe550d3</citedby><cites>FETCH-LOGICAL-c288t-7fc04417c767fdb982599c7d132bc08299a5b42ad28f2dc276e75f3378fe550d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Li, CaiHeng</creatorcontrib><creatorcontrib>Lou, BenGong</creatorcontrib><creatorcontrib>Pan, JiangMin</creatorcontrib><title>Finite locally primitive abelian Cayley graphs</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>Let
Γ
be a finite connected locally primitive Cayley graph of an abelian group. It is shown that one of the following holds: (1)
Γ
= K
n
, K
n,n
, K
n,n
−
n
K
2
, K
n
× … × K
n
; (2)
Γ
is the standard double cover of K
n
× … × K
n
; (3)
Γ
is a normal or a bi-normal Cayley graph of an elementary abelian or a meta-abelian 2-group.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j89KxDAQh4MouKz7AN76Alkn_5rkKMVVYcGLnkOaJmuX2C5JFfr2ptSzc5iZw3zD70PonsCeAMiHTAinAgMBzAnjGK7Qhqha49LoddlrybGkit2iXc5nKMU0cMk2aH_oh37yVRydjXGuLqn_6qf-x1e29bG3Q9XYOfq5OiV7-cx36CbYmP3ub27Rx-HpvXnBx7fn1-bxiB1VasIyOOCcSCdrGbpWKyq0drIjjLYOFNXaipZT21EVaOeorL0UgTGpghcCOrZFZP3r0phz8sEswWyaDQGzOJvV2RRnszgbKAxdmVxuh5NP5jx-p6HE_Af6BV3MWDw</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Li, CaiHeng</creator><creator>Lou, BenGong</creator><creator>Pan, JiangMin</creator><general>SP Science China Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110401</creationdate><title>Finite locally primitive abelian Cayley graphs</title><author>Li, CaiHeng ; Lou, BenGong ; Pan, JiangMin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7fc04417c767fdb982599c7d132bc08299a5b42ad28f2dc276e75f3378fe550d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, CaiHeng</creatorcontrib><creatorcontrib>Lou, BenGong</creatorcontrib><creatorcontrib>Pan, JiangMin</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, CaiHeng</au><au>Lou, BenGong</au><au>Pan, JiangMin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite locally primitive abelian Cayley graphs</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>54</volume><issue>4</issue><spage>845</spage><epage>854</epage><pages>845-854</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Let
Γ
be a finite connected locally primitive Cayley graph of an abelian group. It is shown that one of the following holds: (1)
Γ
= K
n
, K
n,n
, K
n,n
−
n
K
2
, K
n
× … × K
n
; (2)
Γ
is the standard double cover of K
n
× … × K
n
; (3)
Γ
is a normal or a bi-normal Cayley graph of an elementary abelian or a meta-abelian 2-group.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-010-4134-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2011-04, Vol.54 (4), p.845-854 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11425_010_4134_0 |
source | Springer Link |
subjects | Applications of Mathematics Mathematics Mathematics and Statistics |
title | Finite locally primitive abelian Cayley graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20locally%20primitive%20abelian%20Cayley%20graphs&rft.jtitle=Science%20China.%20Mathematics&rft.au=Li,%20CaiHeng&rft.date=2011-04-01&rft.volume=54&rft.issue=4&rft.spage=845&rft.epage=854&rft.pages=845-854&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-010-4134-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s11425_010_4134_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-7fc04417c767fdb982599c7d132bc08299a5b42ad28f2dc276e75f3378fe550d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |